Supplemental Materials for Paper 340 Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks

1 Derivation of Equation 1

$$
\begin{aligned}
\min _{\theta} & D_{\mathrm{KL}}\left(P_{\mathbf{C M}} \| P_{\mathbf{G M}}\right) \\
& =\min _{\theta} \mathbb{E}_{P(\mathbf{c})}\left[\mathbb{E}_{P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c})}\left[\log \frac{P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c})}{P_{\mathbf{G M}}(\mathbf{x} \mid \mathbf{c} ; \theta)}\right]\right] \\
& =\min _{\theta} \mathbb{E}_{P(\mathbf{c})}\left[\mathbb{E}_{P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c})}\left[\log P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c})-\log P_{\mathbf{G M}}(\mathbf{x} \mid \mathbf{c} ; \theta)\right]\right] \\
& =\max _{\theta} \mathbb{E}_{P(\mathbf{c})}\left[\mathbb{E}_{P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c})}\left[\log P_{\mathbf{G M}}(\mathbf{x} \mid \mathbf{c} ; \theta)-\log P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c})\right]\right] \\
& =\max _{\theta} \mathbb{E}_{P(\mathbf{c})}\left[\mathbb{E}_{P_{\mathbf{C M}(\mathbf{x} \mid \mathbf{c})}}\left[\log P_{\mathbf{G M}}(\mathbf{x} \mid \mathbf{c} ; \theta)\right]\right] \\
& \approx \max _{\theta} \frac{1}{N} \sum_{s=1}^{N} \log P_{\mathbf{G M}}\left(\mathbf{x}_{s} \mid \mathbf{c}_{s} ; \theta\right) \quad \mathbf{x}_{s} \sim P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c}), \mathbf{c}_{s} \sim P(\mathbf{c})
\end{aligned}
$$

In the second-to-last step, the $\log P_{\mathbf{C M}}(\mathbf{x} \mid \mathbf{c})$ term is dropped because it does not depend on θ. In the last step, we approximate the expectations with an average over a finite set of samples.

2 Additional Results

Figure 1: Targeting letter shapes with a neurally-guided procedural lightning program. Generated using SMC with 10 particles; compute time required is shown below each letter. Best viewed on a high-resolution display.

Figure 2: Performance comparison for the circuit design problem (section 4.3 in the main paper). "Score" is median normalized score (i.e. argument one to the Gaussian in Equation 4 of the main paper), averaged over 50 runs. The neurally-guided version achieves significantly higher average scores than the unguided version given the same number of particles or the same amount of compute time.

Target

$N=600,38.68 \mathrm{~s}$
ค P

$N=600,33.5 \mathrm{~s}$

Guided

$N=5,0.86 \mathrm{~s}$

$N=10,1.23 \mathrm{~s}$

$N=15,1.75 \mathrm{~s}$

$N=600,25.5 \mathrm{~s}$

$N=600,20.76 \mathrm{~s}$

$N=10,1.04 \mathrm{~s}$

Unguided
(Equal N)
(Equal N)
(Equal Time)

$N=5,0.09 \mathrm{~s} \quad N=30,0.83 \mathrm{~s}$

$N=10,0.14 \mathrm{~s} \quad N=40,1.28 \mathrm{~s}$

$$
N=50,1.73 \mathrm{~s}
$$

Figure 3: Additional shape matching results (section 4.2 in the main paper).

