
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Generating Design Suggestions under Tight Constraints with
Gradient-based Probabilistic Programming

Daniel Ritchie Sharon Lin Noah D. Goodman Pat Hanrahan

Stanford University

Figure 1: Physical realizations of stable structures generated by our system. To create these structures, we write programs that
generate random structures (e.g. a random tower or a randomly-perturbed arch), constrain the output of the program to be near
static equilibrium, and then sample from the constrained output space using Hamiltonian Monte Carlo.

Abstract

We present a system for generating suggestions from highly-constrained, continuous design spaces. We formulate
suggestion as sampling from a probability distribution; constraints are represented as factors that concentrate
probability mass around sub-manifolds of the design space. These sampling problems are intractable using typical
random walk MCMC techniques, so we adopt Hamiltonian Monte Carlo (HMC), a gradient-based MCMC method.
We implement HMC in a high-performance probabilistic programming language, and we evaluate its ability to
efficiently generate suggestions for two different, highly-constrained example applications: vector art coloring
and designing stable stacking structures.

1. Introduction

Considering multiple possibilities is critical in design. Ex-
posure to different examples facilitates creativity—for in-
stance, prototyping multiple alternatives can lead to better-
quality final designs [KDK14, DGK∗10]. Exploring the
whole space of creative options seems to help people avoid
fixation and overcome their unconscious biases [JS91].
Computation can assist with this exploration by generating

suggestions: given a model of the design space, computers
can synthesize examples that their users might never have
thought of independently.

In computer graphics, probabilistic inference has become
popular for computer-aided suggestion in domains as diverse
as color selection and furniture layout [LRFH13,YYW∗12].
In this framework, the user provides a model of the de-
sign space by expressing her preferences as soft constraints,

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

or factors. These factors are combined into a probabil-
ity distribution, and sampling from this distribution using
Markov Chain Monte Carlo (MCMC) provides an efficient
suggestion-generation mechanism. Working with inference
can be made easier through probabilistic programming. A
probabilistic program defines a random process (e.g. con-
structing a random scene); inference then amounts to rea-
soning about the space of possible executions of that pro-
cess under constraints [GMR∗08]. Inference algorithms only
need access to the elementary random choices made by the
program, allowing them to be used in virtually any design
application domain.

Real design applications feature a range of constraints,
from vague preferences that loosely shape the design space
(“Make this object a reddish color”) to strict requirements
that eliminate entire regions of the space as undesirable
(“This container must hold one liter of liquid, up to man-
ufacturing tolerance”). But the tighter these constraints, the
more ill-conditioned the underlying probability distribution
becomes. As we will show, the random walk MCMC meth-
ods typically used for design suggestion break down when
faced with tight constraints, especially in high-dimensional
design spaces.

To work around this problem, developers can implement
complex, application-specific MCMC algorithms that ex-
ploit knowledge of constraint structure [JM12, SW14]. This
strategy does not scale, however, as it requires new al-
gorithms be developed for each new application. General-
purpose solutions would be preferrable, especially for use
with probabilistic programming.

In this paper, we take a step toward solving this problem
by adopting a different sampling algorithm: Hamiltonian
Monte Carlo (HMC). HMC is used in Bayesian statistics
to train predictive models with many parameters [Nea10].
It excels when the posterior distribution of the parame-
ters given training data causes some parameters to become
highly correlated—the same statistical problem as design
variables being strongly coupled by tight constraints. Its per-
formance comes from using the gradient of the probabil-
ity distribution to take less-random walks through the state
space. This gradient can be computed automatically, making
HMC a general-purpose, application-agonistic tool. HMC
operates on continuous design domains (i.e subsets of Rn).
This property makes it a tool well-suited to graphics appli-
cations, since they often feature many continuous quantities
(positions, directions, dimensions, colors, etc.)

To evaluate the usefulness of HMC for design sugges-
tion tasks, we implemented the algorithm in Quicksand,
an open-source probabilistic programming language em-
bedded in the Terra language for high-performance com-
puting [Rit14, DHA∗13]. We then use our implementation
to generate suggestions for two different example appli-
cations: vector art coloring and designing stacking struc-
tures. These applications employ several challenging and

generally-useful constraints, such as physical stability and
symmetry. We compare the performance of HMC to clas-
sical random walk MCMC on these two examples, demon-
strating that HMC provides both qualitatively and quantita-
tively better design space exploration in the presence of tight
constraints.

Our contributions are:

1. The introduction of Hamiltonian Monte Carlo to handle
tight constraints in probabilistic design suggestion.

2. An efficient implementation of HMC in a general-purpose
probabilistic programming language.

3. An evaluation of this implementation through two repre-
sentative example applications: vector art coloring and de-
signing stacking structures.

We view HMC as one new tool in a toolbox that needs
to grow in order to make probabilistic computational design
efficient and easy to use.

2. Background and Related Work

2.1. Design Space Exploration

Design space exploration in computer graphics can be traced
back at least as far as the seminal work on Design Galleries
by Marks and colleagues [MAB∗97]. Exploration can be di-
vided into two phases: generating suggestions and navigat-
ing between those suggestions. Our work focuses on gener-
ating suggestions; other researchers have examined the nav-
igation problem [BYMW13, UIM12].

Researchers have experimented with different algorith-
mic frameworks for generating design suggestions, includ-
ing genetic algorithms [XZCOC12], nonlinear manifold ex-
ploration [YYPM11], and probabilistic inference [JTRS12b,
TLL∗11,MSL∗11]. Our system uses probabilistic inference,
and the particular inference algorithm it relies on, Hamil-
tonian Monte Carlo, shares some mathematical similarities
with manifold exploration methods.

Design domains can contain discrete variables, contin-
uous variables, or some combination of both. Several ex-
isting design suggestion methods operate on purely dis-
crete design spaces, including shape generation by part
combination [KCKK12, JTRS12a] and tiled pattern synthe-
sis [YBY∗13]. In contrast, our work focuses on continu-
ous design spaces, which are often used to model quanti-
ties such as positions, directions, sizes, and colors. In the
mixed discrete/continuous regime, an important subclass of
design spaces are those where discrete choices dictate the
structure of a continuous parameter set [YYW∗12,FRS∗12].
The techniques presented in this paper can be also applied to
the continuous subsets of these domains, for a fixed setting
of the discrete choices.

Probability distributions over design spaces are typi-
cally complex, and researchers have explored techniques

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

to make sampling from them more tractable. Parallel tem-
pering, which assists samplers when probability mass is
concentrated around multiple modes, is one notable exam-
ple [TLL∗11,MSL∗11,LRFH13]. In contrast, the techniques
we present help when probability mass is concentrated along
thin manifolds. The two methods can be used in concert if
a design space exhibits both multi-modality and manifold
structure.

2.2. HMC Applications

HMC has been applied in other areas that require searching
through complex design spaces. It has found use in trajectory
optimization for robot motion planning [ZRD∗13]. It has
also been applied in 3D printing for estimating and correct-
ing material shrinkage during the printing process [HZSD].
Both of these efforts are concerned with optimization prob-
lems: they attempt to find the best possible solution in a large
design space. In contrast, we seek to explore large sets of
possibilites in design spaces.

HMC also been applied to probabilistic programs. One
such effort implements HMC in the Church programming
language by viewing the gradient computation as a non-
standard interpretation of the program [WGSS11]. The Stan
inference system also uses a variant of HMC to perform
inference in user-programmable generative models [Sta14].
For experimenting with graphics applications, we chose to
implement HMC in Quicksand [Rit14]. Quicksand gener-
ates high-performance, low-level code (whereas Church is
a high-level, functional language) and is a general-purpose
programming language (whereas Stan uses a statistical mod-
eling domain-specific language)—these properties make it
easier to efficiently express graphics programs.

3. The Problem: Tight Constraints

To illustrate the problem posed by tight constraints, we ex-
amine a token example application, constraining the position
of a 2D point, that evokes the kind of constraints that can
arise in spatial layout tasks.

Suppose we constrain the position of a point (x,y) with
the following energy penalty:

softeq(y4− y2 + x2−0.25,0,σ) (1)

Here, the ‘soft equality’ function softeq(z,µ,σ) is an alias
for the log of the normal distribution with mean µ and vari-
ance σ

2 evaluated at z (i.e. logN (z,µ,σ)). In this case, it
penalizes points that fall too far from the 0-isocontour of
the function y4− y2 + x2− 0.25. The bandwidth σ controls
the tightness of this factor, or how aggressively it applies its
penalty. The top left of Figure 2 shows the probability den-
sity π(x,y) that results from setting σ = 0.1.

To sample from such a distribution, Markov Chain
Monte Carlo—in particular, the Metropolis-Hastings algo-
rithm (MH) [MRR∗53]—is often the method of choice. MH

σ =
0.1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

σ =
0.005

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Density MH HMC

Figure 2: Tight constraints in action on a simple 2D ex-
ample. Top left: The probability density of Equation 1 with
σ = 0.1. Top middle: Samples drawn from this density using
MH. Bottom left: The probability density of Equation 1 with
σ = 0.005. Bottom middle: Samples drawn from this density
using MH. Bottom right: Samples drawn from this density
using HMC. HMC fully explores the distribution when con-
straints are tight, while MH does not. Samples are colored
by time to illustrate the dynamics of the two algorithms.

works by taking some initial current state (x0,y0), proposing
a new state (x̃0, ỹ0), and then accepting that state if its prob-
ability did not decrease by too much. If the proposed state is
accepted, it becomes the new current state (x1,y1), and the
process repeats. A simple, popular choice of proposal strat-
egy is to construct (x̃0, ỹ0) by choosing one of x0 or y0 at ran-
dom and making a small random perturbation to it. The top
middle of Figure 2 shows 2000 samples drawn from π(x,y)
using MH. The samples form a good approximation to the
true distribution.

The same does not hold when the constraint is tightened
by decreasing σ to 0.005. The bottom left of Figure 2 shows
the new probability density π

′(x,y); the narrow ridges of
high probability reflect the tightened constraint. Running
MH for the same number of samples on this new distribu-
tion gives the result in the bottom middle of Figure 2. While
MH finds its way to a high-probability region (the phase of
sampling statisticians call burn-in), it does not fully explore
the distribution. Most random perturbations push the point
(x,y) off the narrow, high probability ridges, so the pertur-
bation size must be made very small. We also color sample
points by time; the spatially-contiguous regions of constant
color illustrate the sampler’s slow progress. This is a two-
dimensional example chosen for ease of visualization; we
could exploit this low-dimensionality and our knowledge of
the distribution’s symmetry to do better via brute force. Un-
fortunately, this isn’t possible for high-dimensional distri-
butions with unknown shape, where the variable-coupling
problem becomes even worse for MH [Nea10].

We can quantify MH’s poor performance using autocor-
relation, a measure of how similar successive samples are to

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−1

−0.5

0

0.5

1

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

Figure 3: Autocorrelation plots for the samples show in the
bottom row of Figure 2. HMC oscillates around zero (the
ideal value), while MH never approaches this target.

one another. This is a standard test for assessing MCMC per-
formance for Bayesian statistics [KCGN98]. The green line
in Figure 3 shows the autocorrelation plot of the MH sam-
pling trace, which is far from the ideal value of zero: since
the sampler is stuck in the same part of the state space, many
samples are similar, so autocorrelation remains high.

Hamiltonian Monte Carlo performs both qualitatively and
quantitatively better on this example. The bottom right of
Figure 2 shows samples drawn from π

′(x,y) by HMC given
the same computational budget as MH. Visually, these sam-
ples represent the distribution much better, and autocorrela-
tion quickly drops to near-zero (Figure 3, blue line).

The way HMC works can be explained by physical anal-
ogy. If we invert the probability density landscape in the bot-
tom left of Figure 2, the thin ridges become narrow valleys.
Imagine placing a ball in one of these valleys and rolling
it in some random direction. It would roll up and down the
surrounding walls, but it would also make progress down
the length of the valley. This is the core process underlying
Hamiltonian Monte Carlo: it runs a simulation of friction-
less Hamiltonian dynamics using the negative log probabil-
ity − logπ

′(x,y) as its potential energy.

In the next section, we describe the Hamiltonian Monte
Carlo algorithm and our implementation of it in more detail.
We then evaluate our system on two different design sugges-
tion tasks: coloring vector art, and designing stable stacking
structures (Section 5).

4. Hamiltonian Monte Carlo

As shown in the previous section, using MH can result in
a sampler that moves very slowly across the state space—
producing highly-correlated samples—when multiple vari-
ables are strongly coupled by tight constraints.

Hamiltonian Monte Carlo (HMC) is a variant of
MCMC that can efficiently explore highly-coupled, high-
dimensional continuous distributions. It was originally de-
veloped for lattice field theory simulations in statistical
physics [DKPR87], but has since seen increasing adoption

in the Bayesian statistics community (see Neal [Nea10] for
an excellent overview and survey).

HMC derives its name from Hamiltonian dynamics,
which it uses to generate proposals. For this purpose, Hamil-
tonian dynamics specify the behavior of a frictionless, unit-
mass particle with some position x and momentum p. At a
given point in time, the particle has kinetic energy K(p) =
pT p/2 and potential energy U(x) = − logπ(x), the sum of
which is called the Hamiltonian: H(x,p) = K(p)+U(x).

Given a current state x from state space X, HMC generates
proposals as follows:

1. Sample a random momentum p∼N (·,0,In).
2. Simulate the dynamics of the particle (x,p) for L time

steps, resulting in the particle (x′,p′).
3. Accept the new particle with probability

min[1,exp(H(x,p)−H(x′,p′))].

Essentially, HMC performs a Metropolis Hastings propose
+ accept step on an augmented state space where the states
are (x,p) ∈ Rn×Rn. Instead of walking through the state
space with single steps in random directions, HMC follows
long, multi-step paths along the energy landscape defined by
− logπ(x). When this landscape is defined by constraints, as
in our applications, adhering to its contours corresponds to
constraint satisfaction.

To perform Step 2 above, we must simulate the time evo-
lution of our fictitious particle. This is governed by the dif-
ferential equations:

dx
dt

=∇pH(x,p) =∇K(p) = p

dp
dt

=−∇xH(x,p) =−∇U(x) =∇ logπ(x)

which are numerically simulated using the discrete-time up-
date rules

p(t + ε

2
) = p(t)+ ε

2
∇ logπ(x(t))

x(t + ε) = x(t)+ εp(t + ε

2
)

p(t + ε) = p(t + ε

2
)+

ε

2
∇ logπ(x(t + ε))

known as the leapfrog integrator [LR04]. The leapfrog
scheme has two critical properties that make it work for
HMC proposals. First, it is a sympletic integrator (i.e. the
map from X to X that it defines preserves volume). Second,
it is time-reversible: if leapfrog((x,p),ε) = (x′,p′), then
leapfrog((x′,−p′),ε) = (x,−p). In other words, flipping
the direction of momentum and simulating ‘backwards’ re-
turns the system to the state from which it started. These
properties are key to proving that HMC satisfies the detailed
balance condition and thus defines a valid sampler [Nea10].

Parameters HMC has two parameters: the number of
leapfrog steps L and the simulation step size ε. The tighter
the constraints used in a particular application, the smaller

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

ε must be to keep the Hamiltonian dynamics simulation nu-
merically stable. Consequently, the number of steps L must
increase for HMC proposals to make progress exploring the
state space. We use a method proposed by Hoffman and Gel-
man [HG14] to automatically set ε and leave L as the only
free parameter in the system. We found L = 100 to be suffi-
cient for most of our experiments. There is also a variant of
HMC that attempts to automatically, adaptively determine L
as it traverses the state space [HG14].

Bounded variables Many design applications require vari-
ables with strict bounds (e.g. “this object must be between 10
and 50 cm long”). These can be incorporated into HMC via
variable transformation: letting a variable x be unbounded,
but transforming it such that the value x̃ exposed to the pro-
gram is bounded. For a variable with both a lower bound l
and an upper bound u, the typical transformation is logistic:

x̃ = l +(u− l) · 1
1+ exp(−x)

Similar transforms exist for one-sided bounds [Sta14].

Implementation We implemented Hamiltonian Monte
Carlo in Quicksand, a probabilistic programming language
embedded in Terra [Rit14, DHA∗13]. We chose this im-
plementation target because Terra is a low-level language
that compiles to efficient machine code, which we be-
lieve to be important for achieving sufficient performance
for graphics applications. We implement HMC as a cus-
tom MCMC kernel in Quicksand. Quicksand supports in-
ference over arbitrary programs, including recursive pro-
grams and programs whose set of random choices may
change based on control flow decisions. Since HMC oper-
ates on Rn, we can only use HMC to explore parts of the
execution space with a fixed set of random choices. HMC
could be composed with other Quicksand MCMC kernels
(such as LARJ-MCMC [YYW∗12]) to perform inference on
structure-changing programs.

Our system uses automatic differentiation (AD) to com-
pute the gradients required by HMC, relieving the user of
having to derive gradients manually. In particular, it uses
reverse-mode AD, which computes the gradient in just two
passes over the program, regardless of state space dimen-
sionality [CFG∗01, Spe80]. Efficient symbolic differentia-
tion could also be used for some parts of the program and
might further improve performance [Gue07].

5. Evaluation

We use our implementation to evaluate the usefulness of
HMC for computational design by generating suggestions
for two example applications: vector art coloring and build-
ing stacking structures. These are two unrelated application
domains that both require tight constraints to eliminate un-
desirable regions of the design space.

We compare the statistical efficiency of HMC with MH
and show that HMC’s improved efficiency leads to quali-
tatively better suggestion results. For fair comparison, we
initialize each algorithm by burning in for a fixed number
of MH iterations. In all experiments, MH proposal band-
widths are automatically adapted to give∼ 23% acceptance,
and HMC steps sizes are automatically adapted to give ∼
65% acceptance. Selecting a good target acceptance rate can
be highly problem-specific, but there is theoretical evidence
that these are good general settings for their respective algo-
rithms [RGG97]. Each algorithm is allotted the same com-
putational budget in terms of program evaluations. An HMC
sampler with L leapfrog steps uses 2L as many evaluations to
generate a sample as an MH sampler (the factor of 2 comes
from the reverse-mode AD backwards pass). So if the HMC
sampler runs for 1000 iterations using 100 leapfrog steps,
MH is allowed to run for (2 ·100) ·1000= 200000 iterations.

We also collect timing data to demonstrate that our imple-
mentation generates suggestions quickly enough for prac-
tical use. All timing information reported in the following
experiments was collected on an Intel Core i7-3840QM ma-
chine with 16GB RAM running OSX 10.8.5.

Finally, source code for these examples is avail-
able on GitHub at https://github.com/dritchie/
graphics-hmc.

5.1. Vector Art Coloring

In vector illustrations, a significant portion of a design’s vi-
sual impact comes from color choice. Designers must con-
sider semantics as well as aesthetics to create plausible and
harmonious colorings. For example, certain objects may be
strongly associated with specific colors (e.g. sky to blue), re-
gions that are part of the same material may need to have
similar hues, and shading effects may dictate that some re-
gions should be lighter than others.

Previous work has modeled the compatibility of color
combinations and arrangements [OL06, OAH11, LRFH13].
For pattern images, Lin and colleagues introduce a coloring
model composed of soft constraints learned from artist ex-
amples [LRFH13]. Their system uses MH, augmented with
variable swaps and parallel tempering for faster exploration
of multiple modes, to sample coloring suggestions from the
learned model.

To compare the effectiveness of HMC to MH for color-
ing constrained vector art, we add tight semantic constraints
to a simplified version of the coloring model by Lin and
colleagues. Specifically, we add Same-Chroma constraints,
which enforce that two regions should have the same chro-
matic content (i.e. the same color irrespective of lightness),
and Lightness-Relation constraints, which enforce that one
region should be brighter or darker than another. These con-
straints are much tighter than the soft constraints that com-
prise the base model, and thus they are likely to cause trouble

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/dritchie/graphics-hmc
https://github.com/dritchie/graphics-hmc

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

Image Constraints HMC Samples with Semantic Constraints w/o Constraints

Figure 4: Vector art colorings with and without semantic constraints. Image: The image template, which maps individually-
recolorable regions to different grayscale levels. Constraints: Visualization of the applied constraints. Same-Chroma constraints
over regions are visualized with the same hue. White regions have no hue constraints. Lightness-Relation constraints for regions
of the same hue are visualized with darker or lighter shades. Additional Lightness-Relation constraints are as follows: Robot:
eye centers lighter than helmet lights, helmet lights lighter than helmet and robot body, number “5” darker than body. House:
sky lighter than roof and tree highlights, lineart darker than shadows. Rocket: lineart darker than space, stars lighter than
middle flame, window darker than rocket body.

for MH. Refer to the Appendix for the full specification of
our coloring model.

Figure 4 shows examples of sampling from three vec-
tor art images using HMC under multiple Same-Chroma
and Lightness-Relation constraints. The first and second
columns of the figure show the vector art template and a vi-
sualization of the semantic constraints applied. Under these
tight constraints, HMC is still able to sample a variety of
different colorings.

In Figure 5, we compare the performance of HMC and
MH under the same computational budget. We ran the HMC
sampler for 1000 iterations using 100 leapfrog steps and
the MH sampler for the equivalent of 1000 HMC iterations
(200000 iterations). The first two columns show ‘coverage
maps’ for the two sampling traces, where stronger blue re-
gions indicate that more colors were sampled for that region
and that the sampler is exploring the space better. To com-
pute coverage, we discretize CIELAB space into 256 bins
(4x8x8) and count the percentage of bins visited for each
region. HMC consistently samples more colors than MH.

The background in the Bug example has high coverage un-
der MH because it does not participate in any semantic con-
straints. The third column shows autocorrelation plots for
the runs, again demonstrating that the MH samples are more
self-similar.

Timings for these examples are shown in Figure 6. We
report the time consumed by the burn-in phase (the ‘start-
up cost’ of the system), the time taken by sampling (when
the system is generating useful suggestions) as well as the
acceptance ratio of the HMC sampler. The HMC sampler
draws around 60 new samples per second (number of sam-
ples drawn multiplied by acceptance rate and divided by
sampling time). Rates such as these should be sufficient for
use in an interactive coloring tool.

5.2. Stable Stacking Structures

People are fascinated with the stability of physical struc-
tures. The Leaning Tower of Pisa draws over a million visi-
tors each year, games such as Hasbro’s Jenga and Areaware’s
Balancing Blocks have enduring popularity, and balancing

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

HMC MH Autocorr.

0 500 1000

−1

−0.5

0

0.5

1

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

0 500 1000

−1

−0.5

0

0.5

1

Lag
A

ut
oc

or
re

la
tio

n

HMC
MH

0 500 1000
−1

−0.5

0

0.5

1

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

0 500 1000
−1

−0.5

0

0.5

1

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

Figure 5: The first two columns show coverage plots for
HMC and MH sampling on the three image templates.
Darker shades of blue indicate that more colors were sam-
pled for the given region, while white indicates fewer colors
sampled. Colors are counted by discretizing CIELAB space
into 256 bins. The last column shows autocorrelation plots
comparing HMC and MH.

Example |X| Burn-in Sampling Accept.
ratio

Robot (MH) 57 0.12s 12.66s 0.24

Robot (HMC) 57 0.12s 10.61s 0.65

House (MH) 60 0.13s 13.38s 0.24

House (HMC) 60 0.13s 10.67s 0.65

Bug (MH) 30 0.06s 6.08s 0.24

Bug (HMC) 30 0.06s 3.56s 0.63

Rocket (MH) 60 0.12s 14.53s 0.23

Rocket (HMC) 60 0.12s 10.61s 0.63

Figure 6: Timing data for the examples shown in Figure 4.
|X| is the number of random choices made by a program.

Figure 7: Real-world inspiration for our stable stacking ap-
plication. Left: Areaware’s Balancing Blocks game. Right:
Balacing rock sculpture.

rock sculptures have become a form of performance art (Fig-
ure 7). In this section, we consider the computational design
of stacking structures made of rigid blocks that remain stable
despite their apparent precariousness.

Prior work has addressed the stability of design artifacts in
domains such as truss structure design, 3D printing, and pro-
cedural building grammars [SHOW02,PWLSH13,WOD09].
These projects pose stability as an optimization problem:
given an initial input object (e.g. a 3d model or procedu-
ral grammar derivation), seek toward a configuration of the
object that is stable. In contrast, we wish to explore the va-
riety of possible configurations of a given structure that will
stand.

For a rigid structure to be stable, it must be in static
equilibrium: the net force and net torque on every compo-
nent must be zero. In general, these forces are not directly
computable from the structure’s geometry but are defined
implicitly by this equilibrium condition. We can think of
them as random variables whose values are tightly coupled
by the equilibrium constraint. This suggests a simple gen-
erative model for creating stable structures: generate a ran-
dom block structure, introduce latent variables representing
forces between blocks, encourage equilibrium with a tight
constraint, and sample from the resulting distribution using
HMC. See the Appendix for the full specification of our stat-
ics model.

To keep our example application simple, we consider only
convex, hexahedral blocks. While this simplification does
not capture all the rich detail of stacking structures in the
real world (e.g. the irregular convex polyhedra in Figure 7,
left), it admits a wide range of stacking arrangements.

Figure 8 shows some examples of sampling from a ran-
dom block stacking program using both HMC and MH. We

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

HMC Samples HMC Avg. MH Avg. Autocorr.

Stack

0 50 100 150 200

−15

−10

−5

0

5

10

15

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

Lean

0 50 100 150 200

−10

−5

0

5

10

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

TopHeavy

0 50 100 150 200
−8

−6

−4

−2

0

2

4

6

8

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

Figure 8: Generating stable block stacks with different criteria. Top: A stack with no additional constraints. Middle: Encour-
aging the stack to lean in a particular direction. Bottom: Encouraging each block to be twice as large as the block below it. For
each scenario, we show three HMC samples, the average of all samples generated by each method (200 for HMC, 400000 for
MH), and a comparison of their autocorrelation curves.

HMC Samples HMC Avg. MH Avg. Autocorr.

Platforms

0 50 100 150 200

−4

−3

−2

−1

0

1

2

3

4

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

Wheel

0 50 100 150 200

−1.5

−1

−0.5

0

0.5

1

1.5

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

TriArch

0 50 100 150 200

−6

−4

−2

0

2

4

6

Lag

A
ut

oc
or

re
la

tio
n

HMC
MH

Figure 9: Generating stacking structures with more complex, cyclical topologies.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

show three interesting structures sampled by HMC, as well
as the ‘average’ structure produced by both algorithms. We
also compare the autocorrelation curves of the two sample
traces, where autocorrelation is computed by reducing each
structure to a vector of all block vertex positions. We ran
the HMC sampler with 1000 leapfrog steps for 200 samples
and the MH sampler for the equivalent of 200 HMC samples
(400000 iterations).

The top row shows results from the stacking program. In
the middle row, we add a factor to encourage the stack to
lean in a particular direction by penalizing the distance of
each block’s center of mass to a target line. We also generate
precarious-looking ‘top-heavy’ stacks by adding a factor that
encourages each block’s volume to be twice as large as that
of the block below it (bottom row). HMC has little trouble
exploring the complex probability landscape induced by the
stability constraint, but MH struggles, seeking out a local
maximum and barely deviating from it. MH generates small
structures because we initialize the latent force variables to
zero, so it can quickly minimize force and torque residuals
by shrinking all blocks to the minimum size allowed by the
program.

Figure 9 shows this same comparison with programs
that generate more topologically-complex structures. HMC
again successfully samples many interesting configurations
of these structures, whereas MH again becomes stuck. The
complex, cyclical contact relationships in these examples
make the space of stable configurations more tightly con-
strained than in the examples of Figure 8. The supplemen-
tal video shows animations of some of these sample traces
which better illustrate the dynamics of the different algo-
rithms.

Since it uses softened constraints, HMC in general can-
not guarantee that the structures it samples will be exactly in
equilibrium, only that they will be close to it. Thus, these ex-
amples need more leapfrog steps (1000) because constraint
bandwidths have to be kept very tight to keep the sampler
sufficiently close to the static equilibrium manifold (see Ap-
pendix). We used a linear program solver to check whether
each generated structure satisfies the equilibrium equations,
and nearly all of them do.

Timing statistics for these examples are shown in Fig-
ure 10. In general, running time scales linearly with the
complexity of block topology. The sampling rate is lower
than in the coloring examples, since the complexity of the
static equilibrium constraint necessitates taking more small
leapfrog steps. Each step is also more expensive, since the
statics model requires more computation and makes many
more random choices.

To illustrate another use of tight constraints, Figure 11
shows three structures generated from a simple arch program
and the TriArch program with an additional bilateral symme-
try constraint. Adding this constraint takes very little extra

Example |X| Burn-in Sampling Accept.
ratio

Stack (MH) 118 30.57s 65.22s 0.23

Stack (HMC) 118 36.30s 148.76s 0.61

Lean (MH) 118 24.10s 48.39s 0.23

Lean (HMC) 118 27.90s 118.86s 0.62

TopHeavy (MH) 118 33.35s 58.48s 0.23

TopHeavy (HMC) 118 38.04s 186.62s 0.59

Platforms (MH) 330 62.52s 118.75s 0.25

Platforms (HMC) 330 62.54s 279.9s 0.59

Wheel (MH) 555 93.76s 688.70s 0.26

Wheel (HMC) 555 98.04s 729.54s 0.63

TriArch (MH) 555 94.90s 191.25s 0.26

TriArch (HMC) 555 95.5s 700s 0.62

Figure 10: Timing data for the examples shown in Figures
8 and 9. |X| is the number of random choices made by a
program.

Figure 11: Structures generated with an additional con-
straint encouraging bilateral symmetry.

Figure 12: Testing a block stack generated under the con-
straint that it be stable at up to ±10◦ tilts of the ground
plane.

effort in our system: the program simply reflects the struc-
ture about the symmetry plane and then applies a softeq

factor to each symmetric pair of block vertices.

To validate our statics model, we built physical protoypes
of some structures generated by our system (Figure 1). In

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

Figure 13: Block stacks generated under the additional con-
straint that they be stable at every intermediate construction
step.

the program used to generate these examples, we restricted
block shapes to be planar extrusions to allow us to eas-
ily cut them out of wood stock. All blocks shown were
cut from 38mm (1 1

2 in) poplar, whose density and coeffi-
cient of friction we estimated as 425 kg/m3 and 0.3, respec-
tively [Ber10].

To increase the stability of a structure, we can enforce that
it be stable under some class of perturbations, rather than at
a single rest configuration. Figure 12 shows a block stack
generated under the constraint that it stand under as much
as ±10◦ tilts of its ground plane. To enforce this condition,
we write a program that generates a random stack as before,
then rotates the entire scene ±10◦ about one axis, applying
a stability constraint at each rotation.

The generated structures shown thus far are not neces-
sarily stable at every step of their construction, which can
complicate the process of physically building them. We can
mitigate this problem by applying a stability factor at inter-
mediate phases of structure generation, as opposed to just
one at the end. Figure 13 shows three example stacks gen-
erated this way. To generate more exciting structures under
this constraint, one could write programs that use temporary
scaffolding to hold the structure up, treat the presence and
configuration of that scaffolding as random variables, and
infer plausible build processes. This is a promising avenue
for future work.

6. Discussion and Future Work

This paper introduced Hamiltonian Monte Carlo to proba-
bilistic computational design. We implemented HMC in a
high-performance probabilistic programming language, and
we evaluated it on two example applications, showing that
it can efficiently generate suggestions in highly-constrained
scenarios.

HMC relies on the gradient ∇ logπ(x) to make propos-
als, so the probability π must be continuous and differen-
tiable everywhere. This requirement limits the factors that
can be used to define π. For exampe, min and max are use-
ful for defining penalty functions but cannot be used di-
rectly, though they can often be approximated with relaxed
versions. Graphics applications often feature other com-
plex, highly-discontinuous functions, such as rendering and

collision. These functions might also be similarly relaxed
through smooth interpretation, a technique for automati-
cally deriving a smooth, differentiable approximation of pro-
grams [CSL10].

In our evaluations, we validated the basic usefulness
of HMC for design suggestion, but further studies are
needed to understand how HMC can fully integrate into the
probabilistic computational design ecosystem. For instance,
HMC—like most core MCMC samplers—cannot reliably
make large jumps between disconnected modes in the de-
sign space. How does it fare at mode-switching when cou-
pled with parallel tempering? Does it enable more efficient
dimension-jumping when used as the annealing kernel for
LARJ-MCMC?

Ultimately, HMC is just one new tool in the toolbox of
probabilistic design techniques. There are still many other
problems that need general-purpose solutions. Complex hard
constraints remain challenging; sufficiently tight soft con-
straints may be acceptable, as in the case of our stacking
equilibrium examples, but this will not always be the case.
An extension to HMC that explicitly adheres to a mani-
fold may provide a good solution [BSU12]. Complex con-
straints on discrete variables are also difficult—integrating
SAT solvers into MCMC methods may provide some trac-
tion here.

If we can solve these problems, then we can envision a
future where any developer can use general-purpose prob-
abilistic programming to build computational design tools
with powerful, high-level creative controls. We believe that
such systems can have a huge impact not only in computer
graphics, but also in engineering and other disciplines where
design plays a crucial role.

Acknowledgments

Support for this research was provided by Intel (ISTC-VC).
This material is based on research sponsored by DARPA un-
der agreement number FA8750-14-2-0009. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Govern-
ment. The photographs in Figure 7 are provided by Flickr
users kowitz and bastique under the Creative Commons
CC BY-SA 2.0 license (https://creativecommons.org/
licenses/by-sa/2.0/) The vector art images in Figures 4
and 5 are from https://openclipart.org and are in the
public domain.

References
[Ber10] BERGMAN R.: Wood Handbook âĂŞ Wood as an Engi-

neering Material. Forest Products Laboratory, 2010. 10

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://openclipart.org

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

[BSU12] BRUBAKER M. A., SALZMANN M., URTASUN R.: A
family of mcmc methods on implicitly defined manifolds. In
Proc. AISTATS 2012 (2012). 10

[BYMW13] BAO F., YAN D.-M., MITRA N. J., WONKA P.:
Generating and exploring good building layouts. In Proc. SIG-
GRAPH 2013 (2013), SIGGRAPH ’13. 2

[CFG∗01] CORLISS G., FAURE C., GRIEWANK A., HASCOËT
L., NAUMANN U.: Automatic Differentiation: From Simulation
to Optimization. Computer and Information Science. Springer,
2001. 5

[CSL10] CHAUDHURI S., SOLAR-LEZAMA A.: Smooth inter-
pretation. In Proc. PLDI 2010 (2010). 10

[DGK∗10] DOW S. P., GLASSCO A., KASS J., SCHWARZ M.,
SCHWARTZ D. L., KLEMMER S. R.: Parallel prototyping leads
to better design results, more divergence, and increased self-
efficacy. ACM Trans. Comput.-Hum. Interact. 17, 4 (2010). 1

[DHA∗13] DEVITO Z., HEGARTY J., AIKEN A., HANRA-
HAN P., VITEK J.: Terra: A multi-stage language for high-
performance computing. In Proc. PLDI 2013 (2013). 2, 5

[DKPR87] DUANE S., KENNEDY A., PENDLETON B. J.,
ROWETH D.: Hybrid monte carlo. Physics Letters B 195, 2
(1987), 216 – 222. 4

[FRS∗12] FISHER M., RITCHIE D., SAVVA M., FUNKHOUSER
T., HANRAHAN P.: Example-based synthesis of 3d object ar-
rangements. In Proc. SIGGRAPH Asia 2012 (2012), SA ’12. 2

[GMR∗08] GOODMAN N. D., MANSINGHKA V. K., ROY
D. M., BONAWITZ K., TENENBAUM J. B.: Church: a language
for generative models. In Proc. of UAI 2008 (2008). 2

[Gue07] GUENTER B.: Efficient symbolic differentiation for
graphics applications. In Proc. SIGGRAPH ’07’ (2007), SIG-
GRAPH ’07. 5

[HG14] HOFFMAN M. D., GELMAN A.: The no-U-turn sampler:
Adaptively setting path lengths in Hamiltonian Monte Carlo.
Journal of Machine Learning Research (2014). 5

[HZSD] HUANG Q., ZHANG J., SABBAGHI A., DASGUPTA T.:
Optimal offline compensation of shape shrinkage for 3d printing
processes. IIE Transactions on Quality and Reliability. 3

[JM12] JAKOB W., MARSCHNER S.: Manifold exploration: a
markov chain monte carlo technique for rendering scenes with
difficult specular transport. In Proc. SIGGRAPH 2012 (2012),
SIGGRAPH ’12. 2

[JS91] JANSSON D., SMITH S.: Design fixation. Design studies
12, 1 (1991). 1

[JTRS12a] JAIN A., THORMÄHLEN T., RITSCHEL T., SEIDEL
H.-P.: Exploring shape variations by 3d-model decomposition
and part-based recombination. Comp. Graph. Forum 31, 2pt3
(2012). 2

[JTRS12b] JAIN A., THORMÄHLEN T., RITSCHEL T., SEIDEL
H.-P.: Material memex: Automatic material suggestions for 3d
objects. In Proc. SIGGRAPH Asia 2012 (2012), SA ’12. 2

[KCGN98] KASS R. E., CARLIN B. P., GELMAN A., NEAL
R. M.: Markov chain monte carlo in practice: A roundtable dis-
cussion. The American Statistician 52, 2 (1998). 4

[KCKK12] KALOGERAKIS E., CHAUDHURI S., KOLLER D.,
KOLTUN V.: A probabilistic model for component-based shape
synthesis. In Proc. SIGGRAPH 2012 (2012), SIGGRAPH ’12. 2

[KDK14] KULKARNI C., DOW S. P., KLEMMER S. R.: Early
and repeated exposure to examples improves creative work. In
Design Thinking Research. Springer, 2014. 1

[LR04] LEIMKUHLER B., REICH S.: Simulating Hamiltonian
Dynamics. Cambridge Monographs on Applied and Computa-
tional Mathematics. Cambridge University Press, 2004. 4

[LRFH13] LIN S., RITCHIE D., FISHER M., HANRAHAN P.:
Probabilistic color-by-numbers: Suggesting pattern colorizations
using factor graphs. In Proc. SIGGRAPH 2013 (2013), SIG-
GRAPH ’13. 1, 3, 5, 12

[MAB∗97] MARKS J., ANDALMAN B., BEARDSLEY P. A.,
FREEMAN W., GIBSON S., HODGINS J., KANG T., MIRTICH
B., PFISTER H., RUML W., RYALL K., SEIMS J., SHIEBER S.:
Design galleries: A general approach to setting parameters for
computer graphics and animation. In Proc. SIGGRAPH 1997
(1997), SIGGRAPH ’97. 2

[MRR∗53] METROPOLIS N., ROSENBLUTH A. W., ROSEN-
BLUTH M. N., TELLER A. H., TELLER E.: Equation of State
Calculations by Fast Computing Machines. The Journal of Com-
putational Physics 21 (June 1953). 3

[MSL∗11] MERRELL P., SCHKUFZA E., LI Z., AGRAWALA M.,
KOLTUN V.: Interactive furniture layout using interior design
guidelines. In Proc. SIGGRAPH 2011 (2011), SIGGRAPH ’11.
2, 3

[Nea10] NEAL R. M.: MCMC using Hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo (2010). 2, 3, 4

[OAH11] O’DONOVAN P., AGARWALA A., HERTZMANN A.:
Color Compatibility From Large Datasets. ACM Transactions
on Graphics (2011). 5

[OL06] OU L.-C., LUO M. R.: A colour harmony model for
two-colour combinations. Color Research & Application (2006).
5

[PWLSH13] PRÉVOST R., WHITING E., LEFEBVRE S.,
SORKINE-HORNUNG O.: Make It Stand: Balancing shapes for
3D fabrication. In Proc. SIGGRAPH 2013 (2013). 7

[RGG97] ROBERTS G. O., GELMAN A., GILKS W. R.: Weak
convergence and optimal scaling of random walk metropolis al-
gorithms. The Annals of Applied Probability 7, 1 (1997). 5

[Rit14] RITCHIE D.: Quicksand: Low-level probabilistic pro-
gramming in Terra. http://dritchie.github.io/quicksand, 2014. 2,
3, 5

[SHOW02] SMITH J., HODGINS J., OPPENHEIM I., WITKIN A.:
Creating models of truss structures with optimization. In Proc.
SIGGRAPH 2002 (2002). 7

[Spe80] SPEELPENNING B.: Compiling Fast Partial Derivatives
of Functions Given by Algorithms. PhD thesis, Champaign, IL,
USA, 1980. 5

[Sta14] STAN DEVELOPMENT TEAM: Stan Modeling Language
Users Guide and Reference Manual, Version 2.2, 2014. URL:
http://mc-stan.org/. 3, 5

[SW14] SCHWARTZ M., WONKA P.: Procedural design of exte-
rior lighting for buildings with complex constraints. ACM Trans-
actions on Graphics (2014). 2

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH
R., KOLTUN V.: Metropolis procedural modeling. ACM Trans.
Graph. 30, 2 (2011). 2, 3

[UIM12] UMETANI N., IGARASHI T., MITRA N. J.: Guided ex-
ploration of physically valid shapes for furniture design. In Proc.
SIGGRAPH 2012 (2012), SIGGRAPH ’12. 2, 12

[WGSS11] WINGATE D., GOODMAN N. D., STUHLMÜLLER
A., SISKIND J. M.: Nonstandard interpretations of probabilistic
programs for efficient inference. In Proc. NIPS 2011 (2011). 3

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

http://mc-stan.org/

D. Ritchie et al. / Generating Design Suggestions under Tight Constraints

[WOD09] WHITING E., OCHSENDORF J., DURAND F.: Proce-
dural modeling of structurally-sound masonry buildings. In Proc.
SIGGRAPH Asia 2009 (2009). 7, 12

[XZCOC12] XU K., ZHANG H., COHEN-OR D., CHEN B.: Fit
and diverse: Set evolution for inspiring 3d shape galleries. In
Proc. SIGGRAPH 2012 (2012), SIGGRAPH ’12. 2

[YBY∗13] YEH Y.-T., BREEDEN K., YANG L., FISHER M.,
HANRAHAN P.: Synthesis of tiled patterns using factor graphs.
ACM Trans. Graph. 32, 1 (2013). 2

[YYPM11] YANG Y.-L., YANG Y.-J., POTTMANN H., MITRA
N. J.: Shape space exploration of constrained meshes. In Proc.
SIGGRAPH Asia 2011 (2011), SA ’11. 2

[YYW∗12] YEH Y.-T., YANG L., WATSON M., GOODMAN
N. D., HANRAHAN P.: Synthesizing open worlds with con-
straints using locally annealed reversible jump mcmc. In Proc.
SIGGRAPH 2012 (2012), SIGGRAPH ’12. 1, 2, 5

[ZRD∗13] ZUCKER M., RATLIFF N., DRAGAN A., PIV-
TORAIKO M., KLINGENSMITH M., DELLIN C., BAGNELL J.
A. D., SRINIVASA S.: Chomp: Covariant hamiltonian optimiza-
tion for motion planning. International Journal of Robotics Re-
search (May 2013). 3

Appendix

Color Compatibility Model

Our color compatibility model uses soft constraints sim-
plified from the model by Lin and colleagues [LRFH13].
We include saturation, adjacent lightness difference, and
adjacent perceptual difference constraints, since these fac-
tors had high learned weights in the original model.
The perceptual difference constraints (implemented as dis-
tance in CIELAB color space) help distinguish image re-
gions without excessive hue contrast. The lightness dif-
ference constraints help prevent equiluminant adjacent re-
gions which can cause perceived “vibrations” and unstable-
looking shapes. Constraints are parameterized differently if
they are applied to foreground (FG) or background (BG) re-
gions:

Saturation (BG): softeq(
√

a2+b2√
a2+b2+L2 ,0.3,1.0)

Saturation (FG): softeq(
√

a2+b2√
a2+b2+L2 ,0.7,1.0)

Lightness Diff (FG-BG): softeq(
|∆L|
100 ,0.3,0.4)

Lightness Diff (FG-FG): softeq(
|∆L|
100 ,0.2,0.4)

Perceptual Diff: softeq(
√

∆L2+∆a2+∆b2

300 ,0.3,0.2)

where L, a, b are the color coordinates of a region in
CIELAB color space, and ∆L, ∆a, ∆b are differences be-
tween the coordinates of adjacent regions. 100 is the max-
imum lightness value, and 300 is the maximum CIELAB
distance. The rough shape of these constraints are based on
those in the original model. Our model is a weighted sum
of these factors for each region and each pair of adjacent re-
gions. Saturation constraints are weighted by the region area,
while pairwise adjacent constraints are weighted uniformly.
As in the Lin et al. model, we represent and perform infer-
ence on color random variables in RGB space to ensure that
all generated results use colors that can be visualized.

We also add constraints to enforce semantic properties
where needed. We consider two types of additional con-
straints in our experiments:

Same-Chroma softeq(
√

∆a2+∆b2

282.9 ,0, σ

282.9)

Lightness-Relation softeq(∆L
100 ,0.15, σ

100)

where 282.9 is the maximum chroma difference. We set σ

to 5 in our experiments. The Same-Chroma constraint dic-
tates that two colors should have the same chromatic content
(i.e. the same color irrespective of lightness). The Lightness-
Relation constraint enforces a precise directional separation
between the lightnesses of two colors; this constraint is use-
ful for constraining colors to be shades of one another.

Block Statics Model

In our statics model, blocks are assembled into structures
via contacts: wherever two blocks touch, some internal force
distribution arises over the resulting rectangular contact re-
gion. We represent this distribution with forces at each of the
contact region’s four vertices:

• fn: a compressive force normal to the contact region.
• ft1 and ft2: two friction forces tangent to the contact re-

gion.

fn is bounded to be non-negative, and ft1 and ft2 are
bounded to be within |s · fn|, where s is the coefficient of
static friction of the contact. We use s = 0.5 for all results
presented in this paper unless noted otherwise. This statics
model is essentially the same as that used by prior work on
stable procedural buildings [WOD09]. It is important to note
that because friction force directions are treated as free vari-
ables, this model is not strictly physically accurate; correct
handling of frictional contacts in a statics context is still a
challenging problem [UIM12].

Given this statics model, the process for generating a sta-
ble structure is straightforward. The user first writes a pro-
gram that generates a random block structure, e.g. by iter-
atively stacking and perturbing random blocks. Our system
then computes the net force f̄ and net torque τ̄ on the center
of mass of each block i and combines these ‘residuals’ into
the following factor:

∑
i
softeq(|| f̄i||,0,σ f)+softeq(||τ̄i||,0,στ)

The bandwidths σ f and στ must be set in an appropriately
scale-invariant fashion, so that large structures are not pe-
nalized more than small ones. One option is to define them
as percentages of the average external (i.e. due to gravity)
force and torque acting on the structure. We find that 1% tol-
erance keeps an HMC sampler sufficiently close to the static
equilibrium manifold while still allowing for exploration.

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

