
Quicksand:
A Lightweight Implementation of

Probabilistic Programming for
Procedural Modeling and Design

Daniel Ritchie
Stanford University

dritchie@stanford.edu

1 Introduction

The past several years have seen the development of multiple probabilistic programming languages
(PPLs) in the artificial intelligence community [9, 5, 12, 13, 7, 11]. In addition to their expres-
siveness, PPLs allow programmers to develop models modularly and independently from inference
algorithms. Over the same period, computer graphics research has begun to demonstrate how prob-
abilistic inference can enable complex procedural content creation [6, 14, 18]. But this work has
relied on specialized models and inference algorithms, making the methods difficult for technical
artists—who possess programming skills but not necessarily inference expertise—to adopt. Using
probabilistic programming for procedural content creation has the potential to close this adoption
gap.

Graphics applications demand high performance, so a procedural content design PPL should com-
pile to efficient machine code. Tracing JIT compilers such as Shred can deliver high performance,
but they suffer from excessive re-compilation overhead when programs exhibit extensive structure
change (which procedural modeling programs typically do) [17]. Instead, we asked: why not embed
probabilistic programming directly in a compiled, statically-typed, high-performance language?

Along these lines, we present Quicksand, a probabilistic programming system embedded in the Terra
high-performance computing language [4]. We chose Terra as an embedding target because:

• Terra’s multi-stage code generation simplified the embedding process—Quicksand is just
a library in Terra, not a language extension.

• Terra is tightly integrated with Lua, a language already used for scripting in many game
engines.

Other statically-typed PPLs exist, but do not meet our goals. Figaro uses Scala’s static type system
to assemble type-correct programs, but it incurs performance overhead by running on the JVM [13].
Probabilistic C compiles directly to machine code, but it only supports forward inference methods
based on Sequential Monte Carlo [11]. In contrast, Quicksand produces efficient machine code
and supports a variety of Markov Chain Monte Carlo methods via its lightweight embedding strat-
egy [16]. This paper introduces the programming model and implementation strategies underlying
Quicksand.

2 Programming in Quicksand

Figure 1 shows some example Quicksand programs. While Quicksand was motivated by procedural
modeling and design, it is general enough to express classical machine learning problems as well.
For instance, Figure 1 Left is an implementation of the Bayesian linear regression model from the

1



qs = terralib.require("qs")
-- Model definition
linreg = qs.program(function()

return terra()
5 -- The data

var xs = array(0.0, 1.0, 2.0, 3.0)
var ys = array(0.0, 1.0, 4.0, 6.0)
-- Parameters
var m = qs.gaussian(0.0, 2.0, {struc=false})

10 var b = qs.gaussian(0.0, 2.0, {struc=false})
var v = qs.gamma(1.0, 1.0, {struc=false})
-- Condition on all the provided data
for i=0,4 do

qs.gaussian.observe(ys[i], m*xs[i]+b, v)
15 end

-- Predict the value at x=4
return m*4.0 + b

end
end)

20 -- Query the model for the MAP prediction
queryfn = qs.infer(linreg, qs.MAP,

qs.MCMC(qs.TraceMHKernel()))
print(queryfn())
-- output: 8.024

Figure 1: Quicksand example programs. (Left) Code for Bayesian linear regression. (Right)
Procedurally-generated spaceships (see Appendix for code).

Forest generative model repository [1]. Quicksand programs are embedded in the low-level language
Terra, which has similar semantics to C and similar syntax to Lua (the language used to metapro-
gram Terra). Figure 1 Right shows some screenshots from a procedural modeling application for
generating spaceships. The user can input the desired aspect ratio of the generated ships; here, a
square aspect ratio is specified. Model code for this example is shown the Appendix.

Using a low-level language introduces some limitations. In particular, there are no higher-order
functions in Terra. Consequently, Quicksand does not have stochastic memoization (though memo-
ized functions are possible, just not memoized closures). Quicksand also currently has no Bayesian
non-parametrics, since these are typically implemented with stochastic memoization (though other
implementation strategies are possible). In our experience, the lack of these features has not proved
detrimental to procedural modeling ability.

A more complete guide to programming in Quicksand can be found online at http://dritchie.
github.io/quicksand

3 Implementation

Quicksand follows the standard lightweight embedding strategy for PPLs [16]. It stores the values
of random choices made during a program execution in a structurally-addressed Trace object. Ran-
dom choice addresses are computed using Terra’s hygienic code-generation macros, rather than in
a separate transformational compilation pass. This approach allows Quicksand to exist as a Terra
library.

Inference in Quicksand uses MCMC, which defaults to the typical single-site Metropolis-Hastings
algorithm for PPLs (qs.TraceMHKernel) [16]. Quicksand is geared toward procedural modeling pro-
grams, which typically feature many continuous variables whose existence and structure is de-
termined by a smaller set of discrete choices. Thus, Quicksand explicitly separates ‘potentially
structure-changing’ from ‘structure non-affecting’ random choices (the struc tag) and provides sev-
eral MH kernels which propose to all ‘non-structural’ choices at once. These include Gaussian drift,
Hit-and-Run Monte Carlo [3], and Hamiltonian Monte Carlo [10] (which Terra’s flexible operator
overloading makes easy to implement succinctly and efficiently). By proposing to as many variables
as possible, we also minimize the computational overhead of complete program re-execution that
is intrinsic to all lightweight PPL embeddings. Quicksand also provides the Locally-Annealed Re-
versible Jump kernel for boosting the acceptance rate of structure-changing proposals that introduce
multiple new continuous variables [18].

2

http://dritchie.github.io/quicksand
http://dritchie.github.io/quicksand


Quicksand programs use statically-determined type layout and function dispatch, so compiling them
introduces some challenges. For example, compiling a program P requires compiling a trace object
type Trace(P), since the program code will include access to members of Trace(P). However, com-
piling Trace(P) in turn requires compiling P, since (a) we must know the types of all random choices
used in P to determine the layout of Trace(P) and (b) the Trace(P):update method (which propagates
a change in random choices through the program) must call P. We break these cylical dependencies
as follows:

1. Compile P, but do not generate code for random choices. Instead, record their types.

2. Begin compiling P again, generating random choice code. This requires the layout of
Trace(P), which can be finalized using the types recorded in Step 1.

3. Generate code for Trace(P):update. This code will reference the still-compiling P, but since
Terra functions are JIT-compiled, it will not be compiled until it is first called (at which
point P will have finished compiling).

4 Performance

Quicksand programs compile directly to efficient machine code, allowing them to run faster than
previous lightweight PPL embeddings. Figure 2 shows a performance comparison of Quicksand
against probabilistic-js, a state-of-the-art lightweight embedding in Javascript [2]. Both implemen-
tations were run for 100,000 MH iterations on three standard benchmark models from the Forest
repository: Discrete-Time Hidden Markov Model (with ten states and five observations), Medi-
cal Diagnosis, and Bayesian Linear Regression [1]. Evaluations were performed on an Intel Core
i7-3840QM with 16GB of RAM running OSX 10.8.5. In general, the more computation a model
requires, the more speedup Quicksand achieves (as much as 5x in these examples). We also plan to
compare Quicksand with Shred and Probabilistic C [11] to see how it fares against other low-level,
compiled implementations, particularly in the presence of structure change.

Figure 2: Throughput in MH iterations per second achieved by Quicksand (Qs) and probabilistic-js
(pjs) when sampling from a discrete-time HMM (HMM), a medical diagnosis network (Medical),
and a linear regression model (Lin Reg).

5 Future Work

Quicksand is still under active development, and there are several avenues for future work. First,
Terra code can be easily compiled to run on CUDA-enabled GPUs, a capability which suggests a
host of parallel inference algorithms, such as particle filters and parallel tempering. Parallel tem-
pering in particular has been shown to enable near-interactive inference in some procedural design
applications [8]. Parallelizing execution within a program could also be valuable, as demonstrated
by the Augur system for data-parallel inference [15].

In addition, we would like to see Quicksand embedded in games that use Lua scripting. This could
allow game developers and even end-users, given a small amount of extra training, to add complex
procedurally-generated content to their virtual worlds.

3



Acknowledgments Quicksand is being developed as part of the DARPA Probabilistic Program-
ming for Advanced Machine Learning (PPAML) program. This material is based on research spon-
sored by DARPA under agreement number FA8750-14-2-0009. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References

[1] Forest: a reposistory for generative models. http://forestdb.org/, 2014.
[2] probabilistic-js. https://github.com/dritchie/probabilistic-js, 2014.
[3] Claude J. P. Blisle, H. Edwin Romeijn, and Robert L. Smith. Hit-and-run algorithms for

generating multivariate distributions. Mathematics of Operations Research, 18(2), 1993.
[4] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: A multi-

stage language for high-performance computing. In Proc. PLDI 2013, 2013.
[5] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.

Tenenbaum. Church: a language for generative models. In Proc. of UAI 2008, 2008.
[6] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun. A proba-

bilistic model for component-based shape synthesis. In Proc. SIGGRAPH 2012, 2012.
[7] Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. Venture: a higher-order probabilis-

tic programming platform with programmable inference. CoRR, 2014.
[8] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun. Interactive

furniture layout using interior design guidelines. In Proc. SIGGRAPH 2011, 2011.
[9] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey

Kolobov. Blog: Probabilistic models with unknown objects. In In Proc. IJCAI, 2005.
[10] Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte

Carlo, 2010.
[11] Brooks Paige and Frank Wood. A compilation target for probabilistic programming languages.

Journal of Machine Learning Research, 32, 2014.
[12] Avi Pfeffer. Ibal: A probabilistic rational programming language. In In Proc. IJCAI, 2001.
[13] Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River

Analytics Technical Report, 2009.
[14] Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomı́r Měch, and Vladlen Koltun.

Metropolis procedural modeling. ACM Trans. Graph., 30(2), 2011.
[15] Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam Pocock, Stephen J. Green, and

Guy L. Steele Jr. Augur: a modeling language for data-parallel probabilistic inference. CoRR,
2013.

[16] David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. Lightweight implementations
of probabilistic programming languages via transformational compilation. In Proc. AISTATS
2011, 2011.

[17] Lingfeng Yang, Pat Hanrahan, and Noah D. Goodman. Generating efficient mcmc kernels
from probabilistic programs. In Proc. AISTATS 2014, 2014.

[18] Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D. Goodman, and Pat Hanrahan. Syn-
thesizing open worlds with constraints using locally annealed reversible jump mcmc. In Proc.
SIGGRAPH 2012, 2012.

Appendix: Procedural Modeling Code

local spaceship = qs.program(function()

local terra lerp(lo: qs.real, hi: qs.real, t: qs.real)
return (1.0-t)*lo + t*hi

4



5 end

local uniform = qs.func(terra(lo: qs.real, hi: qs.real)
return lerp(lo, hi, qs.uniform(0.0, 1.0, {struc=false}))

end)
10

-- Wings are just horizontally-symmetric stacks of boxes
local genWing = qs.func(terra(mesh: &Mesh, xbase: qs.real, zlo: qs.real, zhi: qs.real)

var nboxes = qs.poisson(5) + 1
for i in qs.range(0,nboxes) do

15 var zbase = uniform(zlo, zhi)
var xlen = uniform(0.25, 2.0)
var ylen = uniform(0.25, 1.25)
var zlen = uniform(0.5, 4.0)
addBox(mesh, Vec3.create(xbase + 0.5*xlen, 0.0, zbase), xlen, ylen, zlen)

20 addBox(mesh, Vec3.create(-(xbase + 0.5*xlen), 0.0, zbase), xlen, ylen, zlen)
xbase = xbase + xlen
zlo = zbase - 0.5*zlen
zhi = zbase + 0.5*zlen

end
25 end)

-- Fins protrude up from ship body segments
local genFin = qs.func(terra(mesh: &Mesh, ybase: qs.real, zlo: qs.real, zhi: qs.real, xmax: qs.real)

var nboxes = qs.poisson(2) + 1
30 for i in qs.range(0,nboxes) do

var xlen = uniform(0.5, 1.0) * xmax
xmax = xlen
var ylen = uniform(0.1, 0.5)
var zlen = uniform(0.5, 1.0) * (zhi - zlo)

35 var zbase = 0.5*(zlo+zhi)
addBox(mesh, Vec3.create(0.0, ybase + 0.5*ylen, zbase), xlen, ylen, zlen)
ybase = ybase + ylen
zlo = zbase - 0.5*zlen
zhi = zbase + 0.5*zlen

40 end
end)

-- The ship body is a forward-protruding stack of boxes
-- Wings and fins are randomly attached to different body segments

45 local genShip = qs.func(terra(mesh: &Mesh, rearz: qs.real)
var nboxes = qs.poisson(4) + 1
for i in qs.range(0,nboxes) do

var xlen = uniform(1.0, 3.0)
var ylen = uniform(0.5, 1.0) * xlen

50 var zlen = uniform(2.0, 5.0)
addBox(mesh, Vec3.create(0.0, 0.0, rearz + 0.5*zlen), xlen, ylen, zlen)
rearz = rearz + zlen
-- Gen wing? (More likely closer to rear of ship)
var wingprob = lerp(0.4, 0.0, i/qs.real(nboxes))

55 if qs.flip(wingprob) then
var xbase = 0.5*xlen
var zlo = rearz - zlen
var zhi = rearz
genWing(mesh, xbase, zlo, zhi)

60 end
-- Gen fin?
var finprob = 0.7
if qs.flip(finprob) then

var ybase = 0.5*ylen
65 var zlo = rearz - zlen

var zhi = rearz
var xmax = 0.6*xlen
genFin(mesh, ybase, zlo, zhi, xmax)

end
70 end

end)

return terra()
-- Generate ship mesh

75 var mesh : Mesh
mesh:init()
genShip(&mesh, -5.0)

-- Enforce desired dimensions
80 var bbox = mesh:bbox()

var dims = bbox:extents()
var targetWidth = 10.0
var targetLength = 10.0
qs.factor(qs.softeq(dims(0), targetWidth, 0.25))

85 qs.factor(qs.softeq(dims(2), targetLength, 0.25))

return mesh
end

end)
90 -- Constrained sampling with MCMC

local query = qs.infer(spaceship, qs.Samples, qs.MCMC(qs.TraceMHKernel(), {numsamps=2000}))
return queryfn()

5


	Introduction
	Programming in Quicksand
	Implementation
	Performance
	Future Work

