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Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.
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1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.



Can we use Sequential Monte Carlo to control procedural mod-
els? Procedural models are typically hierarchical and recursive—
we need to cast them instead as sequential processes, where con-
trol can be imposed incrementally over time. Our insight is that
representing procedural models with probabilistic programs makes
this possible. A probabilistic program makes random choices, and
doing inference amounts to reasoning about the space of possible
executions under some constraint [Goodman et al. 2008]. For pro-
cedural models, random choices are decisions about the structure
and shape of the generated model, and the constraint is the control
scoring function. Critically, these programs have sequential seman-
tics: they execute in a series of discrete time steps. Control can be
imposed incrementally by evaluating a scoring function on the in-
complete model at each step, providing an estimate as to how well
the algorithm is doing thus far.

However, there are multiple ways to sequentialize a structured pro-
cedural modeling program—and as we will show, SMC does not
always perform well using the depth-first ordering given by most
modern, stack-based programming languages. It is typically not
clear a priori what the best ordering(s) will be for a given program
and control scoring function: in the absence of any special knowl-
edge, a good strategy might be to execute the program in random
order.

Following this insight, we introduce a new variant of SMC,
Stochastically-Ordered Sequential Monte Carlo (SOSMC), in
which each particle executes the program in an independent,
random order. We also prove that this algorithm is a correct,
asymptotically-unbiased sampler for the posterior distribution de-
fined by the constrained program. To implement SOSMC for proce-
dural models expressed as general-purpose probabilistic programs,
we also introduce a new programming primitive, the stochastic fu-
ture, whose use requires minimal modification to the original pro-
gram. We then show that SOSMC can handle a range of procedural
models and controls explored in the literature, and that it generates
better-scoring samples under tight time budgets than either normal
SMC or Metropolis-Hastings (MH). For small computational bud-
gets, SOSMC’s outputs often score nearly twice as high as those of
normal SMC or MH.

In summary, our main contributions are:

1. The SOSMC algorithm and a proof of its correctness.

2. An implementation of SOSMC in a practical, general-purpose
programming language using stochastic futures.

3. An evaluation of SOSMC’s expressiveness and performance.

We give a high-level overview of our main insights and approach in
Section 3, then we formally describe the SOSMC algorithm in Sec-
tion 4 and our prototype implementation in Section 5. In Section 6,
we evaluate the algorithm’s performance on a variety of procedural
models with constraints and compare to other sampling methods.

2 Related Work

Controlled Procedural Modeling Multiple existing projects aim
to control procedural models through probabilistic inference. One
uses reversible-jump MCMC to direct the output of stochastic con-
text free grammars [Talton et al. 2011]. Another uses similar
MCMC techniques to guide L-system-based trees toward a tar-
get polygonal model [Stava et al. 2014]. Others develop new
trans-dimensional MCMC methods to solve complex layout prob-
lems [Yeh et al. 2012], use gradient-based MCMC to guide ran-
dom structures toward physical stability [Ritchie et al. 2015], or
use MCMC to make parameterized models of urban environments
satisfy desired critera [Vanegas et al. 2012]. These all use MCMC

as their core control algorithm; in contrast, we focus on Sequential
Monte Carlo for its potential performance benefits.

There have also been several non-probabilistic approaches to di-
recting procedural models. Environmentally-sensitive L-systems
and Open L-systems allow communication between a procedural
model and its environment [Prusinkiewicz et al. 1994; Měch and
Prusinkiewicz 1996]. Another approach decomposes the modeling
domain into geometric guides to which the procedural model should
adhere [Beneš et al. 2011]. These approaches affect the model as it
evolves. Our approach can be thought of as generalizing this type
of control to the probabilistic inference setting.

Sequential Monte Carlo Sequential Monte Carlo has a long
history, beginning with the simulation of self-avoiding polymer
chains [Hammersley and Morton 1954; Rosenbluth and Rosenbluth
1955]. A critical point came with the introduction of a resampling
step, allowing the reallocation of particles according to their prob-
ability [Gordon et al. 1993; Stewart and McCarty 1992]. The re-
sulting algorithm, called the bootstrap filter, was designed for lin-
ear time-series processes. We extend it for structured processes by
linearizing the process and treating the linearization order as addi-
tional set of random variables. It can be shown that, as the number
of SMC particles approaches infinity, their distribution approaches
the target posterior density [Smith and Gelfand 1992; Gordon et al.
1993]. We prove that this distribution is invariant under lineariza-
tion order, thus re-ordering does not change program semantics.

SMC in Computer Graphics Sequential Monte Carlo has found
applications in computer graphics already. It has been applied to
Monte Carlo integration for physically-based rendering, in partic-
ular rendering with participating media [Fan 2006; Pegoraro et al.
2008]. It has also been used to control virtual characters respond-
ing to dynamic environments [Hmlinen et al. 2014]. These applica-
tions have straightforward sequential interpretations: propagation
of light along a path through space, or the motion of a character
over time. In contrast, we focus on structured procedural models,
which have many possible sequentializations.

SMC belongs to the family of population-based methods, which
evolve a population of samples toward some desired goal. This
general approach has also been used for 3D shape design [Xu et al.
2012]. This system maintains a complete set of shapes at all times,
whereas ours works with incomplete shapes defined by partial pro-
gram executions.

SMC for Probabilistic Programs Sequential Monte Carlo has
also previously been applied to probabilistic programs. The An-
glican language implements several SMC methods, including so-
phisticated SMC/MCMC hybrids [Wood et al. 2014]. Probabilistic
C uses OS multiprocessing primitives to construct efficient, par-
allel implementations of these same algorithms [Paige and Wood
2014]. It is also possible to implement these algorithms using
a continuation-passing-style compiler [Goodman and Stuhlmüller
2014]. These systems are restricted to handling a fixed number of
time steps—the common case in statistical inference, where each
step corresponds to a data point. In contrast, we are concerned
with scenarios that have a variable number of steps, as this situa-
tion arises often with structured, recursive procedural models.

3 Approach

In this paper, we focus on programs that generate models through
hierarchical, recursive accumulation of geometric primitives into an
implicit global state. To illustrate our approach, we use an example



-- Generating random
-- 2D ’spaceships’
function genShip()

repeat
genBodySeg()
maybeGenWing()
done = flip(0.5)

until done
end
genShip()
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Figure 2: (a) A program that generates simple random spaceships. Orange-highlighted function calls can be executed in any order with
respect to one another. (b) SMC resampling favors higher-scoring states, so particles that fill in the body first will dominate. Under fixed
ordering, particles skip wing generation altogether, whereas random ordering can defer wing generation until after body generation.

Algorithm 1 SMC for procedural modeling programs

procedure SMC(program, scorefn, N )
P ← N new particles (instances of program)
W ← N real-valued weights
while some particle p ∈ P has not terminated do

// Sample
for all unterminated particles p ∈ P do

Run p until it generates a new geometric primitive
// Score
for i = 1 to N do

W (i)← scorefn(P (i))

NORMALIZE(W)
// Resample
P ← WEIGHTEDSAMPLEN(P , W , N )

program that generates random simplified spaceships out of blocks
(Figure 2a). The program generates the ship body by placing a ran-
dom number of contiguous blocks and may randomly grow wings,
also made of a random number of blocks, from any body segment.
For brevity, we do not show pseudocode for the wing-creation func-
tion maybeGenWing—its structure is similar to that of genShip. We
will use SMC to sample from this program under a scoring func-
tion that encourages similarity to a target shape.

SMC runsN copies of the program, called particles, (conceptually)
in parallel. Particles execute until they arrive at a barrier synchro-
nization point—this is the sampling phase. In our procedural mod-
eling programs, barriers occur when programs generate a new geo-
metric primitive. SMC computes the score of each particle and then
randomly samples N particles in proportion to their scores: high-
scoring particles are sampled more often, and low-scoring ones are
sampled less often, or not at all. This is the resampling phase, and
these new particles become the input for the next sampling phase.
Resampling ensures that the algorithm concentrates particles (and
thus its computational budget) in high-scoring regions of the state
space. Essentially, SMC operates like a stochastic version of beam
search [Bisiani 1987]. Algorithm 1 shows high-level pseudocode
for running SMC on procedural modeling programs.

The first column of Figure 2b shows a hypothetical set of parti-
cles that have passed the first barrier—that is, they have placed
one primitive, which in this case must be a body segment. At
the next barrier (second column), some particles will randomly
start growing wings from the first body segment, while others
will instead proceed with the next body segment. Because body
segments are larger than wing segments, placing a body segment

brings the model closer to the target more quickly than placing a
wing segment. Thus, the resampling phase will favor particles that
place body segments over those that place wing segments—body-
segment particles will dominate the next round (third column).

Consider the calls to genShip and maybeGenWing, highlighted in or-
ange in Figure 2a. These calls generate independent components of
the model and could in principle interleave their execution in any
order with respect to one another. However, most programming lan-
guages will execute them in a fixed, depth-first order, which causes
a problem in this example: all of the second-round particles de-
cided not to generate wings on the first body segment, and SMC
has no mechanism to reverse that decision. The best possible re-
sult from this point on are ships with bodies that match the target,
but no wings (Figure 2b, red box). We could try to eliminate this
problem by only resampling after body segment generation, but this
would leave wing generation without any guidance from resam-
pling, requiring it to match the target by pure chance. And even
if this fix worked, it would be specific to this program—we seek
general-purpose solutions that work for any procedural model.

Now suppose each particle executes the calls to genShip and
maybeGenWing in a random order. This means that some second-
round particles likely deferred execution of maybeGenWing and in-
stead continued executing genShip—they have yet to decide if they
will generate wings on the first body segment. By deferring this de-
cision, SMC can generate results that have both body and wings that
match the target (Figure 2b, green box). Sequential Monte Carlo is
a form of importance sampling, and here execution order random-
ization helps it sample the most important objects first.

These execution-order-sensitive situations do not occur in the linear
time-series models for which SMC was developed, but they fre-
quently arise in structured procedural modeling. It is clear that
some orderings are better than others, but it is not always clear
which orderings those are. Even if known, it is cumbersome to ex-
plicitly express specific orderings in the program text. And finally,
the best orderings depend upon the score function being used—it is
unreasonable to expect the programmer to restructure her code for
each new control imposed on a model.

This is the motivation behind Stochastically-Ordered Sequential
Monte Carlo: since we cannnot know what execution orderings are
good a priori, we randomize them, in the hope that randomization
will discover good orderings on average. After formally describing
SOSMC and its implementation in Sections 4 and 5, we show that
randomization does lead to reliably better results, both qualitatively
and quantitatively (Section 6).



4 SOSMC

Having outlined our approach intuitively, we now formally de-
fine the probability distribution sampled by the SOSMC algorithm.
SMC algorithms are specified as sampling from a sequence of dis-
tributions p1, p2, . . . ; the final distribution pN is often the one of
interest. These distributions are usually defined over a growing set
of variables x, e.g. p1(x1), p2(x1, x2), and so on. These variables
typically represent states which evolve over time.

Defining such a sequence of distributions for SOSMC is more com-
plicated, as general procedural modeling programs follow a struc-
tured execution that does not conform to a single, linear time-series
interpretation. Thus, we augment our state space of variables x to
include execution ordering choice variables o in addition to the pro-
gram’s own random choice variables r.

We define the intermediate distribution pn to be the distribution
over all execution traces which generate n or fewer geometric prim-
itives. Let xn be the sequence of all random choices made up to
primitive n, where x0 is empty. As subsets of this sequence, let
rn denote the procedural model’s random choices, and let on de-
note the ordering choices. We will sometimes refer to r as a trace
through the procedural model program. The intermediate distribu-
tion pn can then be defined recursively as

pn(xn) = pn−1(xn−1) · p(xn|xn−1)

= pn−1(xn−1) ·
|xn\xn−1|∏

i=1

p(xn,i|xn,1:(i−1),xn−1)

where xn,j:k are the jth to kth random variables generated up to
primitive n. The form of the per-variable conditional probability
p(xn,i|xn,1:(i−1),xn−1) depends on the type of the variable xn,i.
If it is one of the procedural model’s random choices, then the con-
ditional probability is a function of the variable’s parents in the pro-
gram’s dataflow graph and depends on the primitive distribution
from which the variable is drawn (e.g. uniform, Gaussian):

pr(xn,i|xn,1:(i−1),xn−1) = p(xn,i|par(xn,i))

If xn,i is an ordering choice, then the conditional probability is de-
fined by an ordering policy π. This policy determines how to select
the next subcomputation to continue when the currently-executing
subcomputation finishes, or when a particle synchronization barrier
is reached (i.e. when a geometric primitive is generated).

We are concerned with two ordering policies. The first is the deter-
ministic policy:

πD(xn,i|xn,1:(i−1),xn−1) =

{
1 if xn,i = N(xn,1:(i−1),xn−1)

0 otherwise

where N(xn,1:(i−1),xn−1) is the number of subcomputations that
could be continued at this point. This policy chooses the last option,
equivalent to popping the top of a stack, with 100% probability.
This behavior corresponds to running a program with depth-first
execution ordering—normal SMC, in other words.

The second ordering policy of interest is the stochastic policy:

πS(xn,i|xn,1:(i−1),xn−1) =
1

N(xn,1:(i−1),xn−1)

which uniformly at random chooses a subcomputation to continue.
This behavior corresponds to running a program with randomized
execution order—the full SOSMC algorithm.

Thus far, we have only defined the prior distribution specified by
the program itself. We already know how to sample from this dis-
tribution: run the program forward. Sampling only becomes chal-
lenging when we include a likelihood term that shapes the distribu-
tion. Our likelihood term is given by a user-provided score function
s(·). Critically, this score function must be defined for partial ex-
ecution traces rn, not just complete execution traces. The total,
unnormalized posterior density at step n is

Fn(xn) = s(rn) · pn(xn)

The full, normalized probability distribution from which SOSMC
samples at step n is

Pπn (xn) =
Fn(xn)

Zπn
(1)

whereZπn is the partition function which normalizes the distribution
and depends on the ordering policy π. The final distribution in this
sequence is PπN : the distribution over complete runs of the program.
As the number of SMC particles approaches infinity, their distri-
bution approaches the target posterior density [Smith and Gelfand
1992; Gordon et al. 1993]. Thus, SOSMC is an asymptotically-
unbiased sampler for PπN .

In the Appendix, we show that the marginal distribution on gener-
ated models is the same under the stochastic ordering policy πS as
under the deterministic policy πD . In other words, if we consider
only the final state and not the order in which it was generated, then
SOSMC draws samples from the desired distribution. The proof
proceeds by marginalizing out the ordering choices oN and show-
ing that the two policies generate equivalent sets of complete traces
rN . Finally, the N subscript indicates that our programs always
terminate after a finite number of steps. The proof in the Appendix
operates in this setting, but it also discusses programs that almost
always terminate (i.e. terminate with probability one).

5 Implementation Using Stochastic Futures

To implement execution order randomization, we need a mech-
anism for interleaving the execution of different function calls
with respect to one another. This requirement suggests looking
at concurrent programming primitives. We settled on futures, a
lightweight concurrency primitive that operates at the function call
level [Halstead 1985]. Futures were originally designed for fine-
grained parallelism, but we use them for a different interpretation of
concurrency: sequential, interleaved programming. When called, a
future may or may not begin executing, but it must finish execut-
ing when the program requests its return value. One common pro-
gramming interface for futures allows for their creation by wrap-
ping a function call with future.create and requesting their values
by calling a force function. The interface to stochastic futures in-
cludes two more features:

• future.switch(): Switch control to and resume executing
some other (random) active future. Our SOSMC implemen-
tation calls this function after every resampling step, allowing
resampled particles to take different paths through the pro-
gram as they advance.

• future.finishall(): Finish all active futures. Our programs
generate geometry by appending to an implicit global model
state, so most futures do not have a return value (e.g. the
highlighted lines in Figure 2a). Our SOSMC implementation
calls this function at the end of every program to force all such
futures to finish.

To achieve the best performance with SOSMC, a procedural mod-
eling program should use a stochastic future wherever it makes a



Algorithm 2 Implementing stochastic futures with coroutines

q ← { } // A global queue of active futures
curr← nil // The currently-running future
procedure SWITCH()

COYIELD()
procedure FORCE(future)

// Suspend the forcing future until this future is finished
q ← q \ {curr}
future.waiters← future.waiters ∪ {curr}
return COYIELD()

procedure FINISHALL()
// Randomly continue futures until all are finished
while ¬ EMPTY(q) do

f ← UNIFORMDRAW(q)
CONTINUE(f )

procedure CONTINUE(future)
curr← future
retvals← CORESUME(future.co, future.args)
future.args← { }
if COFINISHED(future.co) then

// Reactivate any suspended futures that were waiting
// for this one to finish
for all w ∈ future.waiters do

w.args← retvals
q ← q ∪ {w}

q ← q \ {future}

branching decision predicated on a random choice. In our imple-
mentation, we insert these futures manually, since these situations
are easy to identify in practice and typically occur near natural func-
tion call boundaries (e.g. maybeGenWing in Figure 2a). It should also
be possible to automatically transform programs into this form us-
ing source-to-source compilation guided by simple static analysis.

Note that since function calls may execute in an arbitrary order, the
program must be thread safe: any accesses to shared data can be
reordered without changing program behavior. In our implementa-
tion, the only shared data structure is the global model state, and
adding geometry to this state is an associative operation.

Implementing stochastic futures requires the ability to arbitrar-
ily switch between different in-progress computations. Higher-
level concurrency primitives are often implemented atop lower-
level ones, such as threads. For stochastic futures, coroutines are
a natural choice of implementation primitive. Coroutines are a gen-
eralization of subroutines that can suspend their execution, yield
control to another coroutine, and then resume later. They were de-
signed for sequential concurrency in the form of cooperative mul-
titasking [de Moura and Ierusalimschy 2004]. Algorithm 2 out-
lines an impementation of switch, force, and finishall in terms
of asymmetric coroutines. Calling finishall initiates a loop that
drives the random execution of futures, while switch and force de-
termine when control returns to this loop.

We implement a prototype of SOSMC in Lua, with performance-
critical components such as mesh voxelization and intersection im-
plemented as high-performance extensions in Terra [DeVito et al.
2013]. Following Algorithm 2, we implement stochastic futures
using Lua’s native coroutines. To perform weighted particle re-
sampling, we use the well-known systematic resampling scheme
for its simplicity and practical variance reduction properties; we
also found residual resampling to work well [Douc and Cappe
2005]. The source code for our implementation can be found here:
https://github.com/dritchie/procmod. For the comparisons

to Metropolis Hastings in Section 6, we also implement MH for
probabilistic programs in Lua [Wingate et al. 2011]. When the pro-
gram’s dataflow graph is tree-structured, this algorithm is nearly
identical to the MH algorithm for context-free grammars described
in previous work [Talton et al. 2011].

Both our prototype SMC and MH implementations must, on each
iteration, replay the program trace from its beginning, though gen-
erated geometry and derived quantities are cached and not recom-
puted. This gives them a quadratic time complexity in the depth of
the program and is a known drawback of ‘lightweight’ probabilis-
tic programming implementation techniques [Wingate et al. 2011].
The asymptotic similarity of the two implementations makes it fair
to compare their relative running times, which we do in Section 6.
In practice, SMC actually suffers more from trace replay overhead:
in our experiments, up to 80% of system runtime for deep, complex
models, compared to 10% for MH. As we will show, SOSMC reg-
ularly outperforms MH despite this handicap and stands to improve
significantly with a more efficient implementation.

SMC for probabilistic programs can in fact be implemented without
this overhead. Rather than replaying traces, particles could suspend
and then resume at each sample/resample step. Resampling then re-
quires copying suspended particles, which can be implemented ef-
ficiently with a construct like POSIX fork [Paige and Wood 2014].
In a purely functional language, suspended particles can also be
represented with continuations [Goodman and Stuhlmüller 2014].

Finally, while our prototype implementation is serial, SMC is very
straightforward to parallelize, which further enhances its perfor-
mance potential. Particles can be evolved independently in parallel
in the sampling phase and then gathered for the resampling phase
using barrier synchronization.

6 Evaluation

We now demonstrate the ability of SOSMC to quickly and reliably
generate high-quality procedural modeling samples. As test cases,
we have chosen a variety of programs and controls that span a range
of useful features, many of which have been explored previously in
the literature [Talton et al. 2011]. We show that SOSMC can draw
useful samples from these programs and controls, and that it gen-
erates higher-scoring samples than SMC or MH given small com-
putational budgets. In all examples, we impose an additional score
function which prevents geometry self-intersections by assigning a
zero score to such configurations.

6.1 Volume Matching

It can be useful to control the overall 3D shape of a model via a
rough geometric proxy. We implement this control volumetrically.
If Vtarget is a target binary voxel grid defined over domain D, and
Vr is the voxelization of the model described by execution trace r
onto D, then the volume matching score function svmatch is

svmatch(r) = N (sim(Vr, Vtarget), 1, σ) · N (εout(r), 0, σ)

sim(V1, V2) =
1

|D|
∑
x∈D

1{V1(x) = V2(x)}

where sim(V1, V2) returns a [0,1] similarity score for two voxel
grids. εout(r) returns the maximum amount to which the model de-
fined by r extends outsideD along any dimension. The first normal
term in svmatch(r) encourages similarity to the target volume. The
second term penalizes growing beyond D, where the target volume
is not defined. We use a 2% error tolerance in all of our experiments
(σ = 0.02) unless otherwise specified.

https://github.com/dritchie/procmod
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Figure 3: SOSMC sampling from a random building complex
model with volume matching applied.

Figure 4: Using the object avoidance scoring function to make
gnarly trees grow around obstacles.

Figure 1 shows some examples of spaceships and trees sampled
according to this score function using SOSMC. Figure 3 applies
the same score function to encourage a building complex to take on
a crescent-like shape.

6.2 Object Avoidance

Volume matching allows an artist to specify what regions of space
a model should occupy; it can also be valuable to specify the space
a model should not occupy. For this control, the user provides a set
of objects with which the model should avoid contact. We rasterize
these objects onto a binary voxel grid Vavoid. The object avoidance
score function savoid is then

savoid(r) =
∏
x∈D

1{Vr(x) ↑ Vavoid(x)}

where ↑ is logical NAND. This function imposes a hard constraint:
it returns 0 if Vr and Vavoid have any mutually filled cells and 1
otherwise.

Figure 4 shows two examples of using object avoidance to generate
trees that avoid obstacles. On the left, the tree avoids a wall with
three protruding ledges; on the right, it grows through and around
the SIGGRAPH logo. These examples also use a weaker version of
the volume matching score function (σ = 0.05) to encourage the
trees to grow to a tall, full shape.

6.3 Image Matching

It is also useful to specify projective properties of a model, such as
how it looks from a particular viewpoint or when lit from a particu-

Front View Top View

Figure 5: The image matching scoring function is used to control
the appearance of a building complex from a particular viewpoint.
(Left): The model as viewed from the target viewpoint. (Right): The
model viewed from above.

Target

Front View

Top View

Figure 6: Using image matching to control the appearance of
a spaceship’s front profile. The SOSMC-sampled results closely
match the target when viewed head on but exhibit a variety of struc-
tures when viewed from other angles.

lar angle. We implement this type of control through image-based
comparisons. If Itarget is a target binary image defined over domain
D, and Ir is a rendering of the model described by trace r onto D,
then the image matching score function simatch is

simatch(r) = N (sim(Ir, Itarget), 1, σ)

sim(I1, I2) =

∑
x∈DW (x) · 1{I1(x) = I2(x)}∑

x∈DW (x)

where W is a ‘weight image’ defined over D. The weight image
allows users to draw strokes over parts of the image domain where
strict matching is more or less important. For the results shown in
this paper, W is uniform unless explicitly shown. As with volume
matching, σ is 0.02 unless otherwise specified.

Figure 5 shows a use of the image matching scoring function to en-
force a target silhouette for a building complex when viewed from
a particular angle. Note that the generated model is still free to
exhibit random structure when viewed from other angles.

In Figure 6, we use image matching to control the profile of a space-
ship. The generated models bear strong similarity to the target im-
age when viewed from the front but are otherwise unconstrained,
revealing diverse structure when viewed from other angles.

Figure 7 shows another use of image matching: controlling the
shadows cast by toy blocks strewn about a floor. Here, we decrease
the score error tolerance by an order of magnitude (σ = 0.002), use
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Figure 7: Using the image matching scoring function to control
the shape of cast shadows in a scene with toy blocks scattered on
a floor. Face silhouette image derived from a template created
by Milliande Printables (http://www.milliande-printables.
com/face-silhouette-woman-stencil.html).

Figure 8: Using image matching to control the shadows cast by a
network of pipes.

a weight image that places 10 times more weight on the outline of
the target face image, and increase the particle count (N = 1500).
These changes help SOSMC to match the fine details along the
shadow silhouette edge. Again, the blocks in this example appear
randomly arranged when viewed from other angles.

In Figure 8, we use image matching to shape the shadow cast by
a network of rectangular pipes. We lower the score error tolerance
to σ = 0.0005 to encourage SOSMC to fill in the shadow as com-
pletely as possible while avoiding extrusions beyond the desired
silhouette. For our implementation, this is more practical than in-
creasing particle count due to the model’s extreme depth.

6.4 Quantitative Evaluation

Table 1 shows timing statistics for the examples presented in this
section. The second-to-last column shows the number of particles
used by SOSMC; we find that 300 particles is sufficient to generate
high-quality results in most cases. The last column reports the time
taken to generate the example; for figures that show multiple out-
put models, the time reported is the average time to generate them.
All timing data was collected on an Intel Core i7-3840QM machine
with 16GB RAM running OSX 10.8.5. Times for simpler models,
such as the spaceship, are already fast enough (a few seconds) to be
used in interactive settings. As noted in Section 5, generation times
for more complex models can be significantly reduced by eliminat-
ing trace replay overhead or through parallelization.

We can also compare how well SOSMC, SMC, and MH generate
high-scoring samples under different computational budgets. We
are particularly interested in their behavior in low-budget scenar-
ios. As test cases, we use the spaceship, building complex, and tree

Program Control Figure N Time ( s)

Spaceship svmatch 1 300 3.09

Gnarly Trees svmatch 1 300 598.34

Building Complex svmatch 3 300 24.14

Gnarly Trees savoid · svmatch 4 100 164.25

Building Complex simatch 5 300 38.44

Spaceship simatch 6 300 7.33

Toy Blocks simatch 7 1500 135.91

Pipes simatch 8 100 675.81

Table 1: Timing data for all procedural modeling examples shown
in this paper. N is the number of particles used by SOSMC.

programs under volume constraints. These programs all exhibit re-
cursive structure, but of a different nature: the spaceship program
spawns recursive paths (wings, etc.) from a single recursive spine
(the body), whereas the building complex and tree programs gener-
ate components in a multiply-branching, tree-recursive style.

We find that MH requires additional tuning to achieve peak perfor-
mance. Specifically, it generates better results with a score function
tempered down to a 0.5% error tolerance (σ = 0.005). We also
experimented with parallel tempering but found it not to perform
better than normal MH when run for the same amount of time on
sequential hardware. If run on parallel hardware—as in e.g. Talton
et al. [2011]—it could perform better, but for fair comparison, we
would also have to run SMC in parallel. SMC could then process
more particles in the same amount of time, improving its perfor-
mance as well.

In our comparison experiment, we run SMC and SOSMC for par-
ticle counts ranging from 10 to 1000. At each particle count, we
also run MH, giving it as much time as an average SOSMC run
takes to complete at that particle count. We run each algorithm 10
times, take the highest score for each run, and record the mean and
variance of those high scores. Figure 9 shows the results of this ex-
periment. On the left, we plot mean highest score against increasing
computational budget; line thickness is proportional to variance in
highest score. Our implementation computes all quantities in log-
probability space, so the scores shown are log scores.

For the spaceship example, SOSMC starts with higher scores than
either SMC or MH, which both require a significant amount of com-
putation to reach the same score level. SOSMC also achieves con-
sistently low variance in scores (evidenced by the thin orange lines
in Figure 9, left), suggesting that it reliably generates high-scoring
results on every run. SMC suffers from the order-sensitivity prob-
lems discussed in Section 3 but appears to overcome them when
given enough particles. MH fares slightly better than SMC in terms
of score, and its outputs are also qualitatively more diverse, featur-
ing more interesting variations.

In the building complex example, SMC again suffers from order
sensitivity. While it can generate good results, it often fails to gen-
erate both sides of the target crescent curve (Figure 9b, right), lead-
ing to high variance in scores (Figure 9b, left). MH fares better
than SMC and does eventually match SOSMC’s scores at high bud-
gets. At low budgets, however, SOSMC generates good volume
matches, whereas MH does not have enough time to reliably do
so (Figure 9b, right). MH requires twice as much computation as
SOSMC to consistently score above -10, the threshold above which
results appear consistently ‘good’ for this example.

http://www.milliande-printables.com/face-silhouette-woman-stencil.html)
http://www.milliande-printables.com/face-silhouette-woman-stencil.html)
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Figure 9: A comparison of SOSMC, SMC, and MH in generating high-scoring outputs with limited computation time. (Left) Maximum score
achieved by each method, averaged over 10 runs, as computational budget increases. Line thickness is proportional to variance in high
scores over those runs. SMC and SOSMC use the same number of particles; MH runs for as long as SOSMC takes to run on average. (Right)
Representative samples generated by each method given a computational budget of 100 particles (or equivalent average running time, for
MH). SOSMC consistently outperforms both SMC and MH in reliably generating high-quality samples at small budgets.

For the tree example, SMC’s performance is close to SOSMC’s,
since the target shape has linear structure with branching only at
the end. However, order-sensitivity is still an issue, as SMC some-
times generates models that use a large branch where continuing the
trunk would be more natural (Figure 9c, right). MH also performs
well overall on this example, but there is a persistent gap between
its performance and that of SOSMC. MH’s proposals—which ran-
domly re-generate subtrees—can fail to discover the long structure
of the target shape, especially at low budgets (Figure 9c, right).

Finally, as discussed in Section 5, our SMC implementations suffer
significantly worse trace replay overhead than our MH implemen-
tation. We expect SOSMC to further outperform MH in the above
comparisons as this overhead is eliminated.

7 Discussion

This paper introduced SMC to the task of controlled procedural
modeling. We developed the SOSMC algorithm and the stochastic
future to handle the multiple possible sequentializations of a pro-
cedural modeling program. We demonstrated SOSMC’s ability to

generate high-quality results for a variety of programs and controls,
and we showed that it reliably generates better results under small
computational budgets than both depth-first SMC and MH.

7.1 Limitations

SOSMC will not always succeed for all possible programs and
score functions. SMC is known to be susceptible to ‘garden paths,’
or execution traces that look promising for much of their runtime
only to become undesirable later on [Levy et al. 2009]. In settings
where such paths exist, SOSMC could conceivably perform worse
than depth-first SMC, as it may randomly discover garden paths
that depth-first SMC cannot follow. For such problems, the ability
to revise past decisions is critical, so MCMC or hybrid SMC/M-
CMC approaches work better [Andrieu et al. 2010].

SMC also needs random choices to be interleaved with evidence
(i.e. geometry generation) to work well. If too many random
choices are made up-front, the program ‘overcommits’ itself and
proceeds like simple forward sampling. Fortunately, most hierar-
chical, recursive procedural models can be written in interleaved



style. Simple data flow analysis could be used to push random
choices as close as possible to their dependent geometry, if the pro-
gram is not already written in this way.

In addition, SMC can suffer from the ‘sample impoverishment’
problem: repeated resampling tends to kill off all but one or a
few particle execution histories, resulting in a final set of particles
whose early execution histories are identical. For procedural mod-
eling programs, this behavior manifests in many near-duplicates in
the final set of sampled output models. Ideally, SMC would deliver
as many unique samples as it has particles, and there exist a variety
of impoverishment-fighting techniques that could help realize this
goal [Gilks and Berzuini 2001; Lindsten et al. 2014]. MCMC al-
gorithms suffer from a similar problem in the form of ‘mode lock,’
wherein the MCMC chain becomes stuck in a small, localized re-
gion of the state space.

7.2 Scalability

The examples presented in this paper are relatively simple, us-
ing from dozens up to a few hundred primitives, but we believe
that SOSMC should scale well to models of increasing complexity.
In terms of depth complexity (i.e. how many primitives the pro-
gram generates), an implementation that avoids trace replay, such
as a continuation-based implementaiton, should be able to maintain
nearly-constant work per SMC timestep. Some scoring functions,
such as intersection testing, could still become more expensive as
depth complexity increases, however.

In terms of breadth complexity (i.e. the program’s approximate
overall branching factor), a high branching factor results in more
possible execution orderings, which could require more particles to
explore. The results presented in this paper suggest that SOSMC
can work well up to branching factor 4 (the Building Complex pro-
gram) with a reasonable number of particles, but future work should
more thoroughly explore this question.

7.3 Future Work

The scoring function applied to incomplete models can be viewed
as a type of heuristic, as in search algorithms. For the types of con-
trols we consider in this paper, we have seen that using just the raw
score of the partially-generated shape can bias SMC toward placing
large primitives first. Future work could develop—or perhaps de-
rive algorithms for automatically learning—heuristics that take into
account the incomplete model’s possible future, as well.

This paper explores procedural models that generate their outputs
through repeated addition of primitive shapes, but this is not the
only procedural modeling paradigm. Some models evolve a shape
over time according to a simulation, such as erosion. Others re-
fine or subdivide a shape, as in recursive fractal terrain generation.
These types of models could also be sequentialized and sampled
with SMC; understanding the resulting behavior consitutes impor-
tant future work.

We would like to enable interactive control of procedural mod-
els, and the SMC family of algorithms has useful properties for
this scenario. One algorithm processes particles asynchronously,
which could allow a user to start with a low particle count, receive
feedback immediately, and then gradually increase particle count
to continuously improve results [Paige et al. 2014]. Another SMC
variant injects complete particles from one run of SMC into a new
run—this mechanism could allow a user to bias sampler output to-
ward one or a few results of particular interest [Andrieu et al. 2010].

Our presentation of SOSMC considers a stochastic policy πS that
chooses computations to continue uniformly at random, but there

may exist better, non-uniform policies for particular programs or
score functions. In particular, it may be possible to learn such poli-
cies, improving them the more often the inference system is used
and effectively amortizing the cost of inference over time [Gersh-
man and Goodman 2014].

In the Appendix, we prove that SOSMC is correct, but it may also
have provable performance benefits. Given the empirical results
presented in Section 6, it seems possible that execution order ran-
domization may improve worst-case performance in a manner sim-
ilar to multiple importance sampling [Veach and Guibas 1995]. In-
vestigating this possibility is an important avenue for future work.

Finally, SOSMC can also be useful outside the realm of procedural
modeling, as any application that involves guided sampling from a
structured, non-linear random process could benefit from execution
order randomization. Physically-based rendering is one example,
where SOSMC could help sample high-energy ‘trees’ of light paths
that involve multiply-branching recursive bounces. SOSMC could
also help Bayesian vision-as-inverse-graphics systems, which gen-
erate random 3D scenes as hypotheses for the underlying structure
of a 2D image [Kulkarni et al. 2014].
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Appendix: SOSMC Proof of Correctness

We aim to show that the marginal distribution over models gener-
ated by SOSMC is the same as the marginal distribution over mod-
els generated by depth-first SMC.

We will use the fact that a random choice variable r in a trace rn
can be uniquely addressed by its position in the function call tree
of the trace [Wingate et al. 2011]. We call this address addr(r).

Definition 1. Two variables r1 and r2 are equivalent
(r1 ≡ r2) if their addresses and values are the same. That
is, addr(r1) = addr(r2) and r1 = r2.

Definition 2. Two traces r1
n and r2

n are equivalent (r1
n ≡ r2

n) if
they contain equivalent variables. That is,

• ∀r1
n,i, ∃r2

n,j such that r1
n,i ≡ r2

n,j .

• ∀r2
n,j , ∃r1

n,i such that r2
n,j ≡ r1

n,i.



In particular, we assume that equivalent traces are considered
equivalent by the scoring function s(·)—that is, the score assigned
to a trace does not depend upon the order in which it was generated.

Assumption 1. If r1
n ≡ r2

n, then s(r1
n) = s(r2

n). ∗

Together, these definitions allow us to group traces into equivalence
classes Xn, where all xn = {rn,on} ∈ Xn generate the same
partial model. Formally, our goal is to show that PπDN (XN ) =
PπSN (XN ). We start with defining the unnormalized density of an
equivalence class by marginalizing out all the orderings that gener-
ate it. Let r̂n be any trace from equivalence class Xn. Then:

Fn(Xn) =
∑

xn∈Xn

Fn(xn)

=
∑

xn∈Xn

s(rn) · pn(xn)

=
∑

xn∈Xn

s(rn)

n∏
m=1

|xm\xm−1|∏
i=1

p(xm,i|xm,1:(i−1),xm−1)

=
∑

xn∈Xn

s(rn)

n∏
m=1

|rm\rm−1|∏
i=1

p(ri,m|par(ri,m))

n∏
m=1

|om\om−1|∏
j=1

π(oj,m|xm)

= s(r̂n)

n∏
m=1

|r̂m\r̂m−1|∏
i=1

p(r̂i,m|par(r̂i,m)) ∑
xn∈Xn

n∏
m=1

|om\om−1|∏
j=1

π(oj,m|xm)


= s(r̂n)

n∏
m=1

|r̂m\r̂m−1|∏
i=1

p(r̂i,m|par(r̂i,m)

We can move the s(rn) · · · terms outside the summation because
all rn are equivalent (Definition 2, Assumption 1) and because the
remaining terms—the ordering probabilities—form a discrete prob-
ability distribution whose elements sum to one.

By Equation 1, it remains to show that ZπDN = ZπSN . By the defini-
tion of partition function,

ZπN =

∫
Xπ

FN (x)dx =

∫
Ωπ

FN (X)dX

where X π is the set of all complete traces that can be generated
under ordering policy π and Ωπ is the set of all equivalence classes
(from here on, we omit the N subscript for brevity). Thus it
suffices to show that ΩπS = ΩπD .

Lemma 1. ΩπD = ΩπS , which means

1. ∀xD ∈ X πD , ∃xS ∈ X πS such that rD ≡ rS .

2. ∀xS ∈ X πS , ∃xD ∈ X πD such that rS ≡ rD .

Proof.

1. ∀xD ∈ X πD , xD ∈ X πS , since the fixed ordering generated
by πD can be generated by πS with nonzero probability.

∗Efficient, incrementalized implementations that use intermediate results
of s(rn−1) to compute s(rn) must guarantee this property.

2. ∀xS ∈ X πS , create an empty trace rD and walk the function
call tree of rS in depth-first order. When encountering a vari-
able r with location in the call tree given by addr(r), insert
that variable into rD . This process results in a valid trace in
X πD which is equivalent to rS .

We have proven that PπDN (XN ) = PπSN (XN ) for programs that
always terminate after at most N steps. Procedural models that ex-
plicitly limit recursion depth or that stop when geometric features
become too small fit this description. Without such checks, pro-
cedural models only almost always terminate after a finite number
of steps, i.e. termination probability approaches one as the number
of steps approaches infinity. The same analysis should hold in this
case as well, as probabilistic programs that terminate with proba-
bility one have well-defined marginal distributions over execution
traces [Goodman et al. 2008]. The proof would require a limit ar-
gument on N for approximating finite programs.


