
PROBABILISTIC PROGRAMMING FOR PROCEDURAL

MODELING AND DESIGN

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Daniel Ritchie

August 2016

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/vh730bw6700

© 2016 by Daniel Christopher Ritchie. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/vh730bw6700

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Pat Hanrahan, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Noah Goodman, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Alex Aiken

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Procedural modeling, or the use of pseudo-random programs to generate visual con-

tent, plays an important role in computer graphics and design. It facilitates content

creation at massive scales, can automatically create painstakingly-detailed imagery,

and can even generate pleasantly surprising results that can help people to navigate

large and unintuitive design spaces.

Many procedural modeling applications demand directable content—the ability

to enforce aesthetic or functional constraints on model output. Bayesian inference

provides a framework for such control: the procedural model specifies a generative

prior, with the constraints encoded as a likelihood function.

In this dissertation, we use probabilistic programming languages to express such

Bayesian procedural models. A probabilistic programming language (PPL) provides

random choice and Bayesian conditioning operators as primitives, and inference cor-

responds to searching the space of program executions for high-probability execution

traces. PPLs can concisely express arbitrary probability distributions, including the

complex, hierarchical, and often recursive stochastic processes required in procedural

modeling.

Unfortunately, PPL inference is typically ine�cient, relying on expensive Monte

Carlo methods. This dissertation develops a suite a of techniques for speeding up PPL

inference. First, we eliminate redundant computation from Metropolis-Hastings, one

of the most commonly used PPL inference algorithms. Next, we show how to e�-

ciently explore tightly-constrained design spaces using the gradient-based, Hamilto-

nian Monte Carlo algorithm. Then, we address the problems posed by deep branching

iv

structures in procedural models such as recursive trees, using a new variant of Se-

quential Monte Carlo. Finally, we make procedural modeling programs learn from

their own outputs, using neural networks that guide programs toward high-probability

results with fewer samples. Together, these tools bring PPL inference closer to inter-

active rates, which can enable more compelling graphics and design applications.

v

Acknowledgement

“How you get there is the worthier part.”

I would not be here today, writing this dissertation, without the encouragement

and support of many, many people.

I have to begin by thanking my first computer science instructors at Berkeley for

kindling my interest in the field: Brian Harvey, for helping me believe that I could

be a computer scientist (and not to be scared of the math); Paul Hilfinger, for giving

challenging assignments that forced me to learn how to ask for help; Dan Garcia, for

his bottomless enthusiasm, demonstrating that passion and computing are far from

mutually exclusive. Finally, James O’Brien, for giving me my first opportunities to

try my hand at research. I would not have made it to Stanford without those early

experiences under my belt.

For funding my early years at Stanford, I thank Dr. Vishal I. Sikka of SAP.

His Stanford Graduate Fellowship gave me enormous freedom to explore my research

interests and to settle into a niche where I could be productive and successful. For my

later years at Stanford, I thank DARPA for generously and open-mindedly supporting

the fledgling field of probabilistic programming.

I have been blessed with extraordinary mentors while at Stanford—first and fore-

most, my adviser, Pat Hanrahan. At the beginning of my graduate studies, Pat was

patient with me, encouraging me to pursue my own ideas and to take ownership of

them. As I found my footing, he has become an incredible source of wisdom on how

to shape a research project into a coherent and compelling story. Throughout, he has

vi

run an eclectic, happy, and supportive research group of which I’ve been proud to be

a part. He makes it all seem e↵ortless, when it must be anything but. I don’t know

how he does it. I also owe a tremendous debt of gratitude to my co-adviser, Noah

Goodman. As my interests turned more toward artificial intelligence (and proba-

bilistic programming, in particular), Noah has been an invaluable source of technical

expertise. I always leave my meetings with him feeling charged-up about the exciting

possibilities for my research. I am also thankful to Tom Funkhouser for coaching me

through my first paper rejection and for teaching me the basic approach to paper

writing that I still use to this day.

My fellow students and colleagues have also been a continual source of inspiration,

support, and encouragement. Thanks first of all to Jerry Talton and Yi-Ting Yeh:

without your examples to follow, I would never have set o↵ on this crazy mission

of using probabilistic programs for design. The hugest of thanks goes to the mem-

bers, past and current, of Pat’s research group that I’ve gotten to know—Hanrahats

forever! I am especially grateful to Matt Fisher, Manolis Savva, Sharon Lin, and

Zach Devito, with whom I’ve collaborated over the years and who have taught me

virtually everything I know about the day-to-day process of doing research. I also

want to thank the wonderful people who have shared Gates 381 with me during my

stay: Matt, Manolis, Angel Chang, James Hegarty, Michael Mara, and (last but cer-

tainly not least) the incomparable Katherine Breeden. You’ve made it a joy to come

in to the o�ce, even on those days when none of my research was working. I’ve

been lucky to get to work with brilliant and insightful people from Noah’s group,

as well—thanks to Andreas Stuhlmüller, Siddharth Narayanaswamy, and Paul Hors-

fall for sharing your knowledge and broadening my horizons. Finally, thanks to the

amazing undergraduates I’ve had the privilege to work with while at Stanford, Ben

Mildenhall and Anna Thomas. It’s almost scary how smart you are.

Outside of research, I want to thank my friends from the Sci-Fi and Fantasy Book

Club at Stanford. The conversations, debates, and general nerd-out sessions we’ve

shared together have added a joyous new dimension to my life that I didn’t know I

was missing. I never imagined I could look forward to Monday nights so much. And

I cannot possibly express in words how grateful I am to the community of friends

vii

I found through social dance at Stanford. From Jammix to Friday Night Waltz to

Opening Committee and beyond, there are simply too many of you to name here.

You have been my home away from home for the past six years; you’ve kept me sane,

kept me laughing, and kept reminding me that my worth as a human being extends

far beyond my output as a researcher. I have lived a fuller life because of you, and I

can never thank you enough for that.

Finally, and most profoundly, thanks to my parents, Chris and Martha Ritchie, for

their boundless love and support. You are and have always been my best friends and

my strongest advocates. You’ve pushed me to be my best, but you’ve also encouraged

me to do what makes me truly happy—I think most children would be lucky to get

even one of those from their parents. I have to steal a line from one of my favorite

movies, here: Mom, Dad—everything good in my life is because of you. I love you,

and I still want to be like you when I grow up.

viii

Contents

Abstract iv

Acknowledgement vi

1 Introduction 1

1.1 Contributions . 3

1.2 Dissertation Overview . 4

2 Background 6

2.1 Probabilistic Methods for Directable Procedural Content 6

2.1.1 Object Modeling . 7

2.1.2 Scene and Environment Modeling 7

2.1.3 Color and Appearance . 8

2.1.4 Motion and Animation . 8

2.2 Probabilistic Programs . 9

2.2.1 Definition . 10

2.2.2 Inference . 11

2.2.3 Implementation . 13

2.3 Procedural Models as Probabilistic Programs 13

2.3.1 Example: Furniture Arrangement 14

2.3.2 Example: Color Palette Design 16

2.3.3 Example: 3D Tree Modeling 16

2.3.4 Inference Challenges . 18

ix

3 Eliminating Redundant Computation in MCMC 21

3.1 Approach . 22

3.2 Compile-time Source Transformations 25

3.3 Runtime Caching Implementation . 26

3.3.1 Cache Representation . 26

3.3.2 Short-Circuit On Function Entry 27

3.3.3 Short-Circuit On Function Exit 28

3.3.4 Automatic Cache Adaptation 29

3.3.5 Optimizations . 29

3.4 Experimental Results . 30

3.5 Related Work . 33

3.6 Chapter Summary . 35

4 Exploring Tightly-Constrained Design Spaces 37

4.1 Related Work . 39

4.1.1 Design Space Exploration . 39

4.1.2 HMC Applications . 40

4.2 The Problem: Tight Constraints . 40

4.3 Hamiltonian Monte Carlo . 44

4.4 Evaluation . 47

4.4.1 Vector Art Coloring . 47

4.4.2 Stable Stacking Structures . 51

4.5 Chapter Summary . 57

5 Handling Branching Structure with SOSMC 59

5.1 Related Work . 61

5.2 Approach . 63

5.3 SOSMC . 65

5.4 Implementation Using Stochastic Futures 68

5.5 Evaluation . 71

5.5.1 Volume Matching . 71

5.5.2 Object Avoidance . 73

x

5.5.3 Image Matching . 74

5.5.4 Quantitative Evaluation . 75

5.6 Chapter Summary . 80

5.6.1 Limitations . 80

5.6.2 Scalability . 81

6 Learning to Sample using Neural Guides 83

6.1 Related Work . 85

6.2 Approach . 86

6.2.1 Motivation . 86

6.2.2 System Overview . 88

6.3 Mathematical Foundations . 90

6.4 Implementation . 92

6.4.1 Network Architecture . 93

6.4.2 Training . 95

6.4.3 Implementation Details . 95

6.5 Experiments . 95

6.5.1 Image Datasets . 96

6.5.2 Shape Matching . 97

6.5.3 Stylized “Circuit” Design . 103

6.6 Chapter Summary . 105

7 Conclusions and Future Directions 106

7.1 Interoperability . 107

7.2 Future Work . 107

7.2.1 Program Analysis & Transformation 107

7.2.2 Runtime Systems . 109

7.2.3 Amortized Inference . 109

7.2.4 Authoring & Editing . 110

A C3 Speedup Experiment Details 112

xi

B HMC Model Specifications 113

B.1 Color Compatibility Model . 113

B.2 Block Statics Model . 114

C SOSMC Proof of Correctness 116

Bibliography 119

xii

List of Tables

5.1 Timing data for all procedural modeling examples shown in this chap-

ter. N is the number of particles used by SOSMC. 78

xiii

List of Figures

2.1 WebPPL program for generating furniture layouts. 15

2.2 Furniture layouts generated by the program in Figure 2.1. 15

2.3 WebPPL program for generating color palettes. 17

2.4 Palettes generated by the program in Figure 2.3 with (a) just the prior

distribution, (b) pastel and adjacency factors added, and (c) all factors

added. 17

2.5 WebPPL program for generating 3D tree skeletons. 19

2.6 3D tree skeletons generated by the program in Figure 2.5. (a) A sample

from the prior distribution. (c) A sample from the posterior distribu-

tion, conditioned on being volumetrically similar to the shape in (b). . 19

3.1 (Left) A simple HMM program in the WebPPL language; the high-

lighted lines involving query are the only modifications necessary to use

our method with this program. (Right) Illustrating the re-execution be-

havior of di↵erent MH implementations in response to a proposal to the

random choice c
i

shaded in red. Lightweight MH re-executes the entire

hmm program, invoking (orange bar) and then unwinding (blue bar) the

full chain of recursive calls. Callsite caching allows re-execution to skip

all recursive calls under hmm(i-1, obs). With continuations, re-execution

only has to unwind from the continuation of choice c
i

. Combining call-

site caching and continuations allows re-execution to terminate upon

returning from hmm(i+1, obs), since its return value does not change. . 23

xiv

3.2 Source code transformations used by C3. (Left) Original HMM code.

(Middle) Code after applying the caching transform, wrapping all call-

sites with the cache intrinsic. (Right) Code after applying the function

tagging transform, where all functions are annotated with a lexically-

unique ID and the values of their free variables. 25

3.3 The main subroutines governing C3’s callsite cache. Function calls are

wrapped with cache, which retrieves (or creates) a cache node for a

given address a. It calls execute, which examines the function call’s

inputs for changes and runs the call if needed. Finally, MH proposals

use propagate to resume re-execution of the program from a particular

random choice node which has been changed. 27

3.4 Comparing the performance of C3 with other MH implementations.

(Top) Performing 10000 MH iterations on an HMM program. (Bot-

tom) Performing 1000 MH iterations on an LDA program. (Left) Wall

clock time elapsed, in seconds. (Right) Sampling throughput, in pro-

posals per second. 95% confidence bounds are shown in a lighter shade.

Only C3 exhibits constant asymptotic complexity for the HMM; other

implementations take linear time, exhibiting decreasing throughput. . 31

3.5 Comparing C3 and Lightweight MH on an inverse procedural modeling

program. (Left) Desired tree shape. (Middle) Example output from

inference over a tree program given the desired shape. (Right) Per-

formance characteristics of di↵erent MH implementations. C3 delivers

nearly an order of magnitude speedup. 32

4.1 Physical realizations of stable structures generated by our system. To

create these structures, we write programs that generate random struc-

tures (e.g. a random tower or a randomly-perturbed arch), constrain

the output of the program to be near static equilibrium, and then

sample from the constrained output space using Hamiltonian Monte

Carlo. 37

xv

4.2 Tight constraints in action on a simple 2D example. Top left: The

probability density of Equation 4.1 with � = 0.1. Top middle: Samples

drawn from this density using MH. Bottom left: The probability den-

sity of Equation 4.1 with � = 0.005. Bottom middle: Samples drawn

from this density using MH. Bottom right: Samples drawn from this

density using HMC. HMC fully explores the distribution when con-

straints are tight, while MH does not. Samples are colored by time to

illustrate the dynamics of the two algorithms. 42

4.3 Autocorrelation plots for the samples show in the bottom row of Fig-

ure 4.2. HMC oscillates around zero (the ideal value), while MH never

approaches this target. 43

4.4 Vector art colorings with and without semantic constraints. Image:

The image template, which maps individually-recolorable regions to

di↵erent grayscale levels. Constraints: Visualization of the applied

constraints. Same-Chroma constraints over regions are visualized with

the same hue. White regions have no hue constraints. Lightness-

Relation constraints for regions of the same hue are visualized with

darker or lighter shades. Additional Lightness-Relation constraints are

as follows : Robot : eye centers lighter than helmet lights, helmet lights

lighter than helmet and robot body, number “5” darker than body.

House: sky lighter than roof and tree highlights, lineart darker than

shadows. Rocket : lineart darker than space, stars lighter than middle

flame, window darker than rocket body. 48

4.5 The first two columns show coverage plots for HMC and MH sampling

on the three image templates. Darker shades of blue indicate that more

colors were sampled for the given region, while white indicates fewer

colors sampled. Colors are counted by discretizing CIELAB space into

256 bins. The last column shows autocorrelation plots comparing HMC

and MH. 50

4.6 Timing data for the examples shown in Figure 4.4. |X| is the number

of random choices made by a program. 51

xvi

4.7 Real-world inspiration for our stable stacking application. Left: Areaware’s

Balancing Blocks game. Right: Balancing rock sculpture. 52

4.8 Generating stable block stacks with di↵erent criteria. Top: A stack

with no additional constraints. Middle: Encouraging the stack to lean

in a particular direction. Bottom: Encouraging each block to be twice

as large as the block below it. For each scenario, we show three HMC

samples, the average of all samples generated by each method (200 for

HMC, 400000 for MH), and a comparison of their autocorrelation curves. 53

4.9 Generating stacking structures with more complex, cyclical topologies. 54

4.10 Timing data for the examples shown in Figures 4.8 and 4.9. |X| is the
number of random choices made by a program. 55

4.11 Structures generated with an additional constraint encouraging bilat-

eral symmetry. 56

4.12 Testing a block stack generated under the constraint that it be stable

at up to ±10� tilts of the ground plane. 56

4.13 Block stacks generated under the additional constraint that they be

stable at every intermediate construction step. 57

5.1 Controlling the output of highly-variable procedural modeling pro-

grams using our Stochastically-Ordered Sequential Monte Carlo algo-

rithm. Here, the controls encourage volumetric similarity to a target

shape (shown in black). 59

5.2 (a) A program that generates simple random spaceships. Orange-

highlighted function calls can be executed in any order with respect

to one another. (b) SMC resampling favors higher-scoring states, so

particles that fill in the body first will dominate. Under fixed ordering,

particles skip wing generation altogether, whereas random ordering can

defer wing generation until after body generation. 63

5.3 SOSMC sampling from a random building complex model with volume

matching applied. 72

xvii

5.4 Using the object avoidance scoring function to make gnarly trees grow

around obstacles. 73

5.5 The image matching scoring function is used to control the appearance

of a building complex from a particular viewpoint. (Left): The model

as viewed from the target viewpoint. (Right): The model viewed from

above. 75

5.6 Using image matching to control the appearance of a spaceship’s front

profile. The SOSMC-sampled results closely match the target when

viewed head on but exhibit a variety of structures when viewed from

other angles. 76

5.7 Using the image matching scoring function to control the shape of cast

shadows in a scene with toy blocks scattered on a floor. Face silhouette

image derived from a template created by Milliande Printables (http:

//www.milliande-printables.com/face-silhouette-woman-stencil.

html). 76

5.8 Using image matching to control the shadows cast by a network of pipes. 77

5.9 A comparison of SOSMC, SMC, and MH in generating high-scoring

outputs with limited computation time. (Left) Maximum score achieved

by each method, averaged over 10 runs, as computational budget in-

creases. Line thickness is proportional to variance in high scores over

those runs. SMC and SOSMC use the same number of particles; MH

runs for as long as SOSMC takes to run on average. (Right) Rep-

resentative samples generated by each method given a computational

budget of 100 particles (or equivalent average running time, for MH).

SOSMC consistently outperforms both SMC and MH in reliably gen-

erating high-quality samples at small budgets. 79

xviii

6.1 (Top Row) Used as an importance sampler for Sequential Monte Carlo

with N = 10 particles, our neurally-guided procedural models generate

shape-matching results for each of the above letters in about a second.

(Middle Row) The näıve, unguided procedural model does not converge

to recognizable results using the same number of particles (N = 10).

(Bottom Row) The unguided model does better, but still does not

reliably converge, when given the same amount of computation time

as the guided model (⇡ 1 sec). 83

6.2 Transforming a simple linear chain model into a neurally-guided pro-

cedural model. (a) The original program. When the program’s output

(shown in black) is constrained to match a target image (shown in

gray), forward sampling gives poor results. SMC sampling performs

better but requires far more than 10 particles to achieve good results

for all targets. (b) The neurally-guided program, where parameters of

random choices are computed via neural networks. The neural nets

receive the target image and all previous random choices as input (ab-

stracted as “...”; see Figure 6.3b). Once trained, forward sampling

from this program adheres closely to the target image, and SMC with

10 particles consistently produces good results. 87

6.3 Overview of our approach. (a) We start with a procedural model:

a program that makes a sequence of random choices x1 . . .xm

. (b)

The procedural model is transformed into a neurally-guided procedural

model by adding a neural network at each random choice. The net-

work predicts the parameters of the random choice as a function of the

constraints and the previous random choices (shown grayed-out). (c)

An SMC sampling algorithm generates samples from the constrained

procedural model. A stochastic gradient learning algorithm then trains

the neurally-guided procedural model to maximize the probability of

generating these samples. 89

xix

6.4 Neural network architecture for image-matching procedural models.

The network uses a multilayer perceptron which takes a vector of fea-

tures as input and outputs the parameters for a random choice proba-

bility distribution. The input features come from three sources. Local

State Features are the arguments to the function in which the random

choice occurs. Target Image Features come from 3x3 pixel windows of

the target image, extracted at multiple resolutions, around the proce-

dural model’s current position. Partial Output Features are analogous

windows extracted from the partial image the model has generated.

All of these features can be computed from the target image and the

sequence of random choices made thus far. 93

6.5 Example images from our datasets. 96

6.6 Using Sequential Monte Carlo to make a vine-growth procedural model

match target images. N is the number of SMC particles used. The

“Ground Truth” column shows an example result after running SMC

with the unguided model with a large number of particles (N = 600);

these images represent the best possible result for a given target. Our

neurally-guided procedural models can generate results of nearly this

quality in a couple seconds; the unguided model struggles given the

same number of particles or the same computation time. 99

6.7 Targeting letter shapes with a neurally-guided procedural lightning

program. Generated using SMC with 10 particles; compute time re-

quired is shown below each letter. Best viewed on a high-resolution

display. 100

xx

6.8 Performance comparison for the shape matching problem. “Similar-

ity” is median normalized similarity to target mask, averaged over all

targets in a test dataset. Lines drawn in lighter shades show 95% con-

fidence bounds. (a) Performance as the number of SMC particles in-

creases. The neurally-guided model achieves higher average similarity

as more features are added. (b) Computation time required as desired

similarity increases. The vertical gap between the two curves indicates

speedup. Despite the neurally-guided model being more expensive to

evaluate, it still reliably generates high-similarity results significantly

faster than the unguided model. 101

6.9 The e↵ect of guiding continuous random choices with mixture distribu-

tions. Using 4-component mixtures for all continuous random choices

provides a noticeable boost in performance. 102

6.10 The e↵ect of training set size on performance (at 10 SMC particles),

plotted on a logarithmic scale. Average similarity-to-target increases

sharply for the first few hundred sample training traces, then appears

to plateau at around 1000 traces. Noise in the plot is due to randomness

in neural net training, as di↵erent training sessions converge to di↵erent

local optima of the learning objective function. 102

6.11 Constraining the vine-growth program to generate circuit-like patterns.

The “Ground Truth” outputs took around 70 seconds to generate; the

outputs from the guided model took around 3.5 seconds. 104

6.12 Performance comparison for the circuit design problem. “Score” is

median normalized score (i.e. argument one to the Gaussian in Equa-

tion 6.4), averaged over 50 runs. The neurally-guided version achieves

significantly higher average scores than the unguided version given the

same number of particles or the same amount of compute time. . . . 104

xxi

Chapter 1

Introduction

Randomness plays a key role in creative design. Visually interesting texture often

appears random—just ask Jackson Pollock. Randomness can also create variations

on a single design. For example, customers of the design studio Nervous System can

personalize their own random variants of the studio’s Kinematics jewelry [110]. And

there exists evidence that the biggest creative innovations and breakthroughs happen

by exploring random tangents which lead to serendipitous discoveries, rather than

single-minded pursuit of a driving objective [105].

In computer graphics, the act of using randomness to create visual content is

often called procedural modeling [24]. Procedural models are computer programs that

pseudo-randomly generate some visual artifact. They can add naturalistic details to

virtual scenes, such as the bark texture on a virtual tree or ripples on virtual water.

They can create a dizzying variety of content at very little cost, such as the endless

blocky environments created by Minecraft’s world generator. They can also operate

interactively, generating suggestions for a human user to approve. For example, the

FaceGen software used to create player facial appearance in many video games can

create faces at random, possibly arriving at interesting designs the player would not

have thought of independently [44].

In many cases, it is desirable for these programs to be ‘directable,’ meaning it

should be possible to control their output to satisfy specific criteria. These criteria

1

CHAPTER 1. INTRODUCTION 2

might be aesthetic: in a video game level, a randomly-generated virtual tree might

need to frame a house in just the right way. Or they might be functional: the house

itself might be randomly-generated, and it needs to be stable when subjected to

gravity...so that the player can knock it down later in a tussle with aliens.

To those familiar with probabilistic reasoning, achieving directable randomness

might sound suspiciously like a conditional inference problem: we want to sample

executions of a random process, subject to a condition or constraint being satisfied.

From a Bayesian point of view, running a procedural model is just sampling from

some prior distribution p(x), where x are the random choices made by the procedural

model. The constraints can be modeled as a likelihood function `(x), where a higher

value of ` means the output of the model given random choice values x better satisfies

the constraints. The likelihood may often depend on some other data item y, such as

a target shape the procedural model should try to match, in which case the likelihood

function is `(y|x). Generating constraint-satisfying model outputs then corresponds

to sampling from the distribution p(x|y) = 1
Z

p(x)`(y|x), which can be accomplished

using one of a variety of Bayesian inference algorithms.

We believe that probabilistic programming languages (PPLs) are particularly well-

suited to this Bayesian inference task. PPLs are a universal representation for prob-

ability distributions; they can encode any stochastic process [29]. Procedural models

are often complicated, featuring both discrete and continuous variables, large blocks

of deterministic computation, and complex control flow (including recursion). The

universality of probabilistic programs makes them a good choice of representation.

PPLs can also be made easy to use, as writing down a probabilistic model in a PPL

requires only a moderate amount of programming skill as well as some domain knowl-

edge about the problem to be solved. In our setting, this means that graphics artists

and developers do not have to be inference experts in order to use them: they just

have to know how to write code.

Unfortunately, the expressiveness and generality of probabilistic programs comes

at a cost: inference is typically ine�cient. Very simple programs can sometimes be

reduced to Bayesian networks or factor graphs, allowing the application of classical

inference techniques for probabilistic graphical models [54]. But as we mentioned

CHAPTER 1. INTRODUCTION 3

above, procedural modeling programs are not simple. They feature both discrete

and continuous random variables in complex dependency patterns. And they are

often transdimensional, where the number of random variables is itself a random

variable—such phenomena can arise in recursive probabilistic programs. Programs

with such properties typically do not have graphical model analogues. Thus, to

perform inference, we must fall back to treating the program as a black box from

which samples can be drawn, and use slowly-converging, approximate Monte Carlo

methods such as Markov Chain Monte Carlo. This ine�ciency is disappointing, as we

would ideally like to embed PPL inference in interactive applications such as games

and design tools.

This dissertation focuses on improving PPL inference e�ciency for procedural

modeling programs. To do this, we peek inside the probabilistic programming black

box, identifying and exploiting common properties of procedural modeling programs

to make inference run faster or more e�ciently. In the work we present, these prop-

erties include incrementalizable subcomputations, derivatives, re-orderable subcom-

putations, and dataflow paths that can be replaced with neural networks. Exploiting

such properties often requires techniques from the programming languages literature,

such as program transformations.

1.1 Contributions

In this dissertation, we make the following contributions to improving PPL inference

e�ciency for procedural modeling and design:

• We present an incremental variant of the Metropolis-Hastings (MH) algorithm

for probabilistic programs which eliminates redundant computation incurred

by previous approaches. The algorithm is comparatively easy to implement,

requiring only a few source-to-source program transformations, rather than an

entire custom interpreter. We show how our algorithm, called C3, accelerates

MH inference for recursive, tree-structured procedural modeling programs. It

also o↵ers performance benefits for classical machine learning and Bayesian data

analysis programs.

CHAPTER 1. INTRODUCTION 4

• We apply the Hamiltonian Monte Carlo algorithm to procedural modeling and

design programs, demonstrating that it allows e�cient exploration of tightly-

constrained design spaces where Metropolis-Hastings fails. We evaluate the

algorithm on two di↵erent families of programs, including programs for assem-

bling 3D structures that can jointly infer the spatial configuration of a structure

as well as internal forces which make the structure stable.

• We develop a new variant of the Sequential Monte Carlo algorithm for proce-

dural modeling programs. This new algorithm, called Stochastically-Ordered

Sequential Monte Carlo (SOSMC), randomly re-orders exchangeable subcom-

putations within the program. We show that SOSMC finds higher-likelihood

samples with less computation time than either SMC or MH.

• We introduce neurally-guided procedural models: procedural modeling pro-

grams whose random choices are controlled by neural networks, rather than

the dataflow of the original program. As a precomputation step, we show how

to train these networks using high-likelihood samples generated by an inference

algorithm such as SMC. Using the trained networks as an importance sampler,

SMC can find high-likelihood samples 5-10x faster.

Together, these contributions form the basis of an inference toolkit that brings inter-

active inference for procedural modeling and design closer to reality. Our implemen-

tations for all of these techniques are open-source; links to source code are provided

in the respective chapters for each method. This technical work is based primarily

on four previous publications [92, 90, 91, 93].

1.2 Dissertation Overview

The rest of this dissertation is organized as follows:

In Chapter 2, we cover necessary background information for our technical con-

tributions. This material includes the history of probabilistic methods for directable

procedural content in computer graphics, as well as the basics of probabilistic pro-

gramming languages and the di↵erent techniques used to implement them. To make

CHAPTER 1. INTRODUCTION 5

things more concrete, we then provide three detailed examples of procedural mod-

els expressed as probabilistic programs: furniture layout, color palette design, and

constrained 3D trees. We use the challenging characteristics of these programs to

motivate the need for more e�cient inference.

The next four chapters present our technical contributions in detail. Chapter 3

describes C3, our incremental variant of Metropolis-Hastings. Chapter 4 covers the

Hamiltonian Monte Carlo algorithm and our application of it to design space explo-

ration. Chapter 5 details the Stochastically-Ordered Sequential Monte Carlo algo-

rithm and its use in controlling 3D model-generating programs. Chapter 6 introduces

the neurally-guided procedural modeling paradigm.

Finally, we conclude the dissertation in Chapter 7, where we summarize our main

contributions and discuss the future of probabilistic programming for procedural mod-

eling and design.

Chapter 2

Background

In this chapter, we briefly review the most relevant background material to put our

technical contributions in context. We first survey the use of probabilistic methods

as applied to directable procedural content creation in computer graphics, painting a

picture of the state-of-the-art prior to the application of probabilistic programming to

this problem. We then provide a brief primer on probabilistic programming languages,

including the common strategies for implementing them, as our contributions build

directly on this prior work. Finally, we bring these two areas of research together by

presenting three detailed examples of procedural models expressed as probabilistic

programs. We point out some properties of these programs that make inference

challenging, motivating the need for our contributions to more e�cient inference.

2.1 Probabilistic Methods for Directable

Procedural Content

While the quest for directable procedural content is an old one, the prevalence of

probabilistic techniques for solving the problem is relatively new. In recent years,

an increasing number of research projects have relied on probabilistic modeling rep-

resentations and inference algorithms to solve content generation problems. In this

6

CHAPTER 2. BACKGROUND 7

section, we survey several examples in the domains of object modeling, scene model-

ing, appearance modeling, and animation.

2.1.1 Object Modeling

Procedural models are most commonly used to generate 3D object geometry. Such

procedural object models are often represented using probabilistic grammars, whose

hierarchical (and sometimes recursive) branching structure can naturally encode shapes

ranging from plants to buildings [86, 74]. In this setting, users may wish to impose

some constraints on the generated shapes; several recent projects have used proba-

bilistic inference to provide this control. The Metropolis Procedural Modeling sys-

tem uses reversible-jump MCMC to infer grammar derivations which are similar to

a target image or a target volume. [112]. More recent work focuses on inferring the

parameters of procedural trees, using MCMC with a custom likelihood function that

measures similarity to a user-provided polygonal tree model [106]. The inferred pa-

rameters then allow generation of new trees which resemble the input model. Other

work has focused instead on urban building facades, using the same techniques as

Metropolis Procedural Modeling to control derivations from a facade-generating split

grammar [67]. In this project, the constraint is a target photograph that the generated

facade should match as closely as possible.

2.1.2 Scene and Environment Modeling

Virtual objects are not of much use without virtual environments in which to put

them: these can range from massive, outdoor terrains to small interior settings such

as bedrooms and kitchens. Procedural generation of such environments is becoming

increasingly important, as modern games and simulations demand a greater quantity

and variety of virtual playing fields. Several projects have explored the generation

of indoor furniture layouts by MCMC sampling from a probability distribution that

encodes functional and aesthetic constraints [69, 130, 129]. These constraints include

criteria such as providing space for a person to walk between furniture items and

encouraging visual balance between objects in the room. MCMC has also been used

CHAPTER 2. BACKGROUND 8

to control the generation of virtual cities, sampling from a distribution that encodes

constraints on how much sunlight buildings receive, how close they are to nearby

parks, and other urban planning criteria [114].

2.1.3 Color and Appearance

The examples presented thus far have all focused on creating geometry, but the ‘ap-

pearance’ of that geometry is also important: its color, texture, and material, as well

as how it is lit. Procedural methods for these features facilitate automatic genera-

tion of richer visual content. The criteria for what constitutes a good or appropriate

appearance are often vaguely defined and subjective, so probabilistic models of ap-

pearance are often learned from examples. One recent project learns how to color 2D

patterns by training a factor graph model on patterns colored by human artists [62].

The factors capture properties that colors should have based on the shape and spa-

tial characteristics of the regions they fill (e.g. background colors are more likely to

be very dark or very light). Another system samples outfits for virtual characters

by drawing from a large wardrobe of possible garments [131]. Correlations between

di↵erent types of garments (e.g. dress slacks with suit jackets) are modeled by a

Bayesian network trained on labeled photographs of people, and garment colors are

sampled from a learned model of appealing color palettes. There has also been work

on predicting the material properties of 3D objects (color, shininess, etc.) given only

the object’s geometry [46]. This system also uses a factor graph model, trained on a

large database of objects with materials assigned.

2.1.4 Motion and Animation

Many computer graphics applications require dynamic visual content: virtual objects

that move, according to pre-determined animation or in response to user input. Prob-

abilistic control methods have found some applications in procedural animation, as

well. In one early example, a rigid-body simulation system uses MCMC to explore

possible simulation trajectories until arriving at one that has a desired final state,

such as a bouncing die that lands in a particular spot [12]. To make this possible, the

CHAPTER 2. BACKGROUND 9

deterministic rigid-body physics simulation is transformed into a stochastic process

by randomly varying the bounce direction whenever an object strikes a surface. More

recently, another project uses Sequential Monte Carlo for real-time control of a virtual

character reacting to external forces [36]. The SMC proposal function advances the

character’s motion according to a physics simulation, and the likelihood function mea-

sures adherence to goals (e.g. not falling down, moving smoothly). Simulating mul-

tiple SMC particles in parallel maintains multiple possible motion states, preventing

the character from being trapped in a single unstable state when confronted with an

unexpected new stimulus. Yet another project uses a variant of Metropolis-Hastings

to infer mechanical crankshaft assemblies that, when turned, cause a mechanical toy

to produce a desired motion [133].

2.2 Probabilistic Programs

The systems just surveyed demonstrate the potential of probabilistic techniques for

controlling procedural graphics content. But they are scattered across many di↵erent

application domains. They rely on a grab-bag of probabilistic modeling represen-

tations, from Bayesian networks to factor graphs to grammars to ad-hoc, problem-

specific models. And they employ a host of algorithms, from MCMC to SMC to belief

propagation, not all of which are immediately recognizable as such.

Probabilistic programs can unify this e↵ort: since they are a universal represen-

tation for probability distributions, they subsume all other types of models used by

these systems [29]. They can also be made to support many inference algorithms.

They are also an understandable representation for probability distributions: com-

puter graphics artists and developers can read and write them without having to be

inference experts.

CHAPTER 2. BACKGROUND 10

2.2.1 Definition

For the purposes of this thesis, we define a probabilistic programming language (PPL)

to be a Turing-complete, deterministic language augmented with the following addi-

tional language primitives:

• Random choices: Stochastic functions which sample from a probability dis-

tribution, e.g. Gaussian or Bernoulli.

• Conditioning: Statements which impose some constraint on the values of

random choices or other program expressions.

• Inference: Operators which compute the conditional distribution over some

program value(s) given some constraints.

The following program illustrates these concepts. It is written in WebPPL, a probaba-

bilistic programming language based on a subset of Javascript [30]. We use WebPPL

for several examples throughout this dissertation:

var model = function() {
var a = flip(�.5);
var b = flip(�.5);
var c = flip(�.5);
condition(a || b);
return a + b + c;

};
Enumerate(model);

In this program, flip samples from a Bernoulli distribution, condition imposes the

constraint that its argument must be true, and Enumerate computes the conditional

distribution on the output of model (i..e a + b + c) conditioned on a || b being true.

The output of this program is the discrete marginal distribution

2 : �.5��
1 : �.333
3 : �.167

indicating that under the constraint, model has output 2 half of the time, output 1 one

third of time, and output 3 one sixth of the time. Output 0 is has zero probability,

as the condition statement does not allow for it.

CHAPTER 2. BACKGROUND 11

The semantics of inference are defined via rejection sampling: the distribution

computed by inference is the distribution on values that results from running the pro-

gram forward and rejecting return values that do not satisfy the constraints. While a

correct specification, this procedure is not a very e�cient way to compute conditional

distributions, and so most implementations of probabilistic programs use more sophis-

ticated methods under the hood. Additionally, while the condition statement imposes

a hard constraint, probabilistic programming languages may also provide mechanisms

for enforcing soft constraints (in WebPPL, the factor statement serves this role). In

this case, inference semantics are defined by likelihood weighting [54]. In this the-

sis, we focus primarily on such soft constraints. Other work has looked in-depth at

inference in the presence of hard constraints for procedural content generation [125].

In addition to WebPPL, there are many other existing production and research

systems that fit our precise definition of probabilistic programs. These include but

are not limited to Church [29], Venture [65], and Anglican [121]. There are other im-

plementations of probabilistic programming which are also Turing-complete but that

formulate the semantics of inference di↵erently; these include BLOG [71], Stan [104],

and Figaro [81]. Finally, there also exist a number of probabilistic modeling lan-

guages which build and perform inference on graphical models, but which are not

fully Turing-complete probabilistic programming languages. These include the long-

established BUGS [103] and JAGS [82] software packages, as well as Dimple [39] and

Factorie [68].

2.2.2 Inference

Probabilistic programming languages demand inference algorithms that work on pro-

grams in general, regardless of what phenomena those programs actually model. The

following are the most prevalent, general-purpose inference algorithms that have been

made to work in the probabilistic programming setting:

Exact inference For programs that make only discrete random choices with finite

support, exact inference is possible via enumerating all possible paths through the

program and marginalizing out all of the latent random choices. This is in fact the

CHAPTER 2. BACKGROUND 12

operation performed by Enumerate in the example program above.

Approximate inference When programs include random choices with infinite sup-

port, inference engines typically fall back to one of the following approximate algo-

rithms:

• Rejection sampling / likelihood weighting: In the simplest cases, inference

can proceed via its semantics, by repeatedly drawing forward samples from

the program, discarding those that fail hard constraints, and weighting the

remainder according to any soft constraints [29].

• Markov Chain Monte Carlo (MCMC): When it is extremely unlikely to

draw high-likelihood samples via forward sampling, MCMC typically performs

better than likelihood weighting. In the PPL setting, MCMC usually takes the

form of the Metropolis-Hastings algorithm [70]: the inference engine proposes

a change to the value of some random choice(s) in the program, and the new

value is propagated to the rest of the program [119, 65].

• Sequential Monte Carlo (SMC): a.k.a. particle filtering [21]. A popular

choice for time-series models such as hidden Markov models, SMC can be ap-

plied to programs in general, since all probabilistic programs involve a sequence

of random choices. PPLs implement SMC by running multiple copies of the pro-

gram (conceptually) in parallel, suspending them at synchronization barriers to

perform particle resampling [121, 79].

• Variational inference: a family of algorithms which attempts to optimize the

free parameters of an easy-to-sample-from ‘guide’ distribution such that it is

similar to the hard-to-sample-from ‘target’ distribution of interest. Variational

inference has recently been applied to probabilistic programs by deriving a guide

program using simple transformations of the target program [45, 120, 72].

We focus on approximate algorithms in this thesis—especially MCMC, SMC, and

variational inference—since exact inference is not applicable to the complex procedu-

ral modeling programs we are interested in developing.

CHAPTER 2. BACKGROUND 13

2.2.3 Implementation

PPL inference algorithms require the ability to interact/interfere with program execu-

tion: to pause and resume it, to inspect and change the values of random choices, etc.

Most existing PPLs have adopted one of two main strategies for compiling/executing

probabilistic program code to make this possible:

Interpretation Running a probabilistic program in a custom interpreter allows

for arbitrary modifications to program execution at any time. This is the strategy

adopted by the original MIT-Church implementation of the Church language [29],

Venture [65], and the original implementation of Anglican [121].

Embedding Alternatively, a probabilistic programming language can be embed-

ded in an existing deterministic language via source-to-source compiler transforma-

tions. For example, WebPPL’s compiler takes probabilistic code and transforms it

into deterministic Javascript code. This strategy is also used by Bher Church [119],

Quicksand [89], and the revised implementation of Anglican [122]. There are several

advantages to this implementation style: less implementation e↵ort, faster execution

by leveraging the host language’s native runtime, and easy interaction with existing

deterministic code in the host language. For these reasons, we focus on the embedded

approach in this thesis.

2.3 Procedural Models as Probabilistic Programs

Having surveyed both probabilistic methods in procedural graphics, as well as prob-

abilistic programs, we are now ready to bring the two together and look at some

procedural models written as probabilistic programs. In this section, we provide

three such examples: one that generates pleasing color palettes, one that generates

furniture layouts, and one that generates 3D tree models. Some code is elided for

brevity (i.e. utility subroutines).

CHAPTER 2. BACKGROUND 14

2.3.1 Example: Furniture Arrangement

Our first example is a program which generates arrangements of 3D tables as might be

seen in a virtual co↵ee shop (Figure 2.1). While it involves 3D objects, this problem is

naturally phrased as a 2D layout problem. Thus, our program extracts the radius of

the up-aligned bounding cylinder for each object (utils.getRadius) and then proceeds

to generate 2D layouts by treating the objects as circles.

The main, top-level function for this program is the genLayout function. At a high-

level, it randomly samples a number of tables; for each table, it chooses a random

number of chairs, a random location, and a random orientation. WebPPL programs

can also invoke factor statements to introduce likelihood terms (i.e. soft contraints).

Each invocation of factor(x) adds the quantity x to the posterior log-probability of

the program execution. This program uses sepFactor to ensure that furniture objects

are spatially separated, roomInsidenessFactor to keep all furniture objects inside the

bounds of some room shape, and roomFillFactor to encourage the furniture objects

to fill up the room as much as possible. If we wanted to get more sophisticated, we

could also define factors to align furniture along walls or to ensure the existence of a

walkable path through the room [129, 69].

Finally, the program invokes WebPPL’s MCMC routine with the onlyMAP option set to

true to perform approximate maximum a posteriori inference. Since the distribution

encoded by this program is complex and multimodal, this inference returns some mode

of the distribution. The addDishes function (not shown) adds a random configuration

of plates and cups atop each table as a detail post-process. This form of composition—

feeding the result of inference into further probabilistic computation—is a powerful

feature enabled by exposing inference as part of the language itself, rather than as a

meta-process external to the language. Figure 2.2 shows two example scenes generated

by our furniture layout program.

Note that while WebPPL is a purely functional language, it allows imperative

assignments to global variables (i.e. the globalStore) via a store-passing transform.

This feature can simplify programs that require common data to be shared among

many subroutine calls (in this case, the tables list).

CHAPTER 2. BACKGROUND 15

var genTables = function(n) {
if (n > �) {
// Sample table position
var pos = [uniform(-55,55),uniform(-55,55)];
// Keep the table inside the room
roomInsidenessFactor(pos, tableRad);
// Keep tables a minimum distance apart
map(function(t) {

separationFactor(pos, t.pos, 3*tableRad);
}, globalStore.tables);
// Generate table at this location
globalStore.tables =

globalStore.tables.concat([genTable(pos)]);
// Continue
genTables(n - 1);

}
};

var genTable = function(pos) {
// Sample overall rotation for the table
var rot = gaussian(�, Math.PI);
// Sample number of seats
var nseats = 2 + randomInteger(3);
// Compute chair positions
var chairs = mapN(function(i) {
// Angle / position
var cang = rot + (i/nseats) * TWOPI;
var rad = tableRad+chairRad+chairRad*�.5;
var cpos = add(pos, polar2rect(rad, cang));
// Rotation / Forward vector
var cfwd = normalize(sub(pos, cpos));
var crot = angleBetween([�, 1], cfwd);
// Keep chair inside the room
roomInsidenessFactor(cpos, chairRad);
// Keep chair away from other furniture
foreach(globalStore.tables, function(t) {

sepFactor(cpos,t.pos,2*chairRad+tableRad);
foreach(t.chairs, function(c) {

sepFactor(cpos,c.pos,3*chairRad);
});

});
// Return chair object
return { ang: cang, pos: cpos, rot: crot };

}, nseats);
// Return table object
return { pos: pos, rot: rot, chairs: chairs };

}

var tableRad = util.getRadius(’table.obj’);
var chairRad = util.getRadius(’chair.obj’);
var room = util.loadRoom(’room.txt’);

var gaussFactor = function(x, mu, sigma) {
var diff = x - mu;
factor(-(diff*diff) / (sigma*sigma));

};

var sepFactor = function(p1, p2, minSep) {
gaussFactor(

Math.max(minSep - dist(p1, p2), �), �, �.5);
};

var roomInsidenessFactor = function(p, r) {
var d = pointToPolygonDist(p, room.walls);
var isIn = util.pointInPolygon(p, room.walls);
var dSigned = (isIn ? -d : d) + r;
var pad = -3;
var dist = Math.max(dSigned, pad);
return gaussFactor(dist, pad, 2);

};

var roomFillFactor = function(tables) {
// Measure overlap between tables + room
var tOvers = map(function(table) {

// Measure overlap between chairs and room
var cOvers = map(function(chair) {

return circleRoomOverlap(
chair.pos, chairRad, room);

}, table.chairs);
return circleRoomOverlap(

table.pos, tableRad, room)
+ reduce(plus, �, cOvers);

}, tables);
var totalOver = reduce(plus, �, tOvers);
gaussFactor(

Math.min(totalOver/room.area, 1), 1, �.1);
};

var genLayout = function() {
// Generate tables & chairs
globalStore.tables = [];
genTables(poisson(4));
// Encourage furniture to fill the room
roomFillFactor(globalStore.tables);
// Return scene
return { room: room,

tables: globalStore.tables
};

};

// Perform inference for final result
var scene = MCMC(genLayout,
{ samples: 1����, onlyMAP: true }).MAP().val;
addDishes(scene);

Figure 2.1: WebPPL program for generating furniture layouts.

Figure 2.2: Furniture layouts generated by the program in Figure 2.1.

CHAPTER 2. BACKGROUND 16

2.3.2 Example: Color Palette Design

For our next example, we consider writing a probabilistic program to generate ap-

pealing 5-color palettes. Such a program could be used to automatically create color

themes for websites, user interfaces, or interior design projects. ‘Appealing’ is a neb-

ulous goal, however, and the most recent work on predicting the quality of color

palettes does so by learning from a large number of examples [77]. To keep our exam-

ple simple, we will instead use heuristics to generate a pleasing subset of all possible

palettes.

Figure 2.3 shows the code for this program. It begins by sampling five random col-

ors from the HSV color space. If we draw samples from just this prior distribution, we

obtain palettes such as those shown in Figure 2.4a. These completely random palettes

are not very appealing, so we clearly need to refine our program. We first add some

factors to encourage each color to be pastel (see pastelFactors) and to ensure that

adjacent colors are su�ciently far apart in color space that they don’t bleed together

(see adjacencyFactors). Performing inference on this program now gives results such as

those in Figure 2.4b. These colors are legible and more appealing, but they still lack

global harmony. To further improve results, we will restrict our palettes to a specific

design scheme: one main color (colors[�]), two accent colors (colors[1] and colors[3]),

and two shades of those accent colors (colors[2] and colors[4]). To increase overall

color harmony, we add factors to encourage the main and accent colors to be ‘split-

complementary’: that is, forming an isosceles triangle when arranged on a color wheel

(see complementarityFactors). We then add factors to encourage colors[2] and colors[4]

to be the same shade of colors[1] and colors[3], respectively (see shadeFactors). Infer-

ence on this complete program now produces samples like those in Figure 2.4c, which

appear more balanced and appealing.

2.3.3 Example: 3D Tree Modeling

For our final example, we show a program that generates 3D tree skeletons. Trees

are one of the most popular applications of procedural modeling, and outdoor en-

vironments in games, movies, and simulations often feature forest-sized swaths of

CHAPTER 2. BACKGROUND 17

var pastelFactors = function(colors) {
// High value and low saturation
map(function(c) {
gaussFactor(c[2], �.75, �.�6);
gaussFactor(c[1], �.25, �.�6);

}, colors);
};

var adjacencyFactors = function(colors) {
mapIndexed(function(i, c) {
if (i < colors.length - 1) {

var c2 = colors[i + 1];
gaussFactor(dist(c, c2), �.5, �.�6);

}
}, colors);

};

var cos6� = Math.cos(deg2rad(6�.�));
var cos15� = Math.cos(deg2rad(15�.�));
var complementarityFactors = function(hv) {

gaussFactor(dot(hv[�], hv[1]), cos15�, �.�1);
gaussFactor(dot(hv[1], hv[3]), cos6�, �.�1);
gaussFactor(dot(hv[3], hv[�]), cos15�, �.�1);

};

var shadeFactors = function(c, hv) {
// Same hue
gaussFactor(dot(hv[1], hv[2]), 1.�, �.�1);
gaussFactor(dot(hv[3], hv[4]), 1.�, �.�1);
// Same saturation
gaussFactor(c[1][1] - c[2][1], �.�, �.�1);
gaussFactor(c[3][1] - c[4][1], �.�, �.�1);
// Two shades have same lightness difference
var vdiff12 = c[1][2] - c[2][2];
var vdiff34 = c[3][2] - c[4][2];
gaussFactor(vdiff12 - vdiff34, �.�, �.�1);

};

var genPalette = function() {
// Sample random colors
// HSV, components in range [�, 1]
var colors = repeat(5, function() {

return [
uniform(�.�, 1.�), // H
uniform(�.�, 1.�), // S
uniform(�.�, 1.�) // V

];
});

// Encourage ’pastel’ colors
pastelFactors(colors);

// Encourage adjacent color difference
adjacencyFactors(colors);

var hueVectors = map(function(c) {
return polar2rect(1, 2 * Math.PI * c[�]);

}, colors);

// Split complementarity
complementarityFactors(hueVectors);

// Shades
shadeFactors(colors, hueVectors);

return colors;
};

// Perform inference
MCMC(genPalette, {

samples: 2����,
onlyMAP: true

}).MAP().val;

Figure 2.3: WebPPL program for generating color palettes.

(a) (b) (c)

Figure 2.4: Palettes generated by the program in Figure 2.3 with (a) just the prior
distribution, (b) pastel and adjacency factors added, and (c) all factors added.

CHAPTER 2. BACKGROUND 18

procedurally-generated vegetation [43].

Figure 2.5 shows the code for this program; genTree is the top-level function. It

calls the recursive branch function, each invocation of which generates a single piece of

tree branch geometry. These geometries accumulate in the globalStore.geometry list.

branch itself is structured much like an L-system [85]: it maintains a current coordinate

frame (curr) describing the position, orientation, and size of the last branch generated.

Simple random processes determine whether to continue the current branch, whether

to generate an o↵shoot branch, as well as the continuous parameters of these new

branches. Figure 2.6a shows an example output from this process.

This program also controls the shape of the generated trees through factors that

encourage similarity to a target volume. The program rasterizes the generated geome-

try in globalStore.geometry onto a 3D voxel grid and performs a cell-by-cell comparison

between the resulting grid and a target grid. The result of this comparison feeds into

a factor statement that penalizes dissimilarity. Figure 2.6c show a sample from this

posterior distribution, given the volume target in Figure 2.6b.

2.3.4 Inference Challenges

In presenting these three examples, we focused on how to express procedural models

as probabilistic programs. In the process, we have glossed over some of the ugly

details about how inference actual performs on programs such as these.

As show in the example code, we used MCMC inference for all three examples. In

particular, WebPPL uses a popular variant of Metropolis-Hastings for probabilistic

programs called “lightweight MH” [119]. This algorithm, while elegant and simple to

implement, unfortunately performs a significant amount of redundant computation,

meaning that inference on our programs takes longer to run than is strictly required.

In Chapter 3, we propose a new extension to lightweight MH that eliminates much

of this redundant computation. It is especially helpful for recursive programs such as

the tree program in Figure 2.5.

Faster MH is not always enough. For each column in Figure 2.4, we generated

the three color palettes using three separate runs of MH. Ideally, we would generate

CHAPTER 2. BACKGROUND 19

var branch = function(r�, curr, i, d, prev) {
// Stop generating if branches get too small
if (curr.radius / r� >= �.1) {
var uprot = gaussian(�, Math.PI / 12);
var leftrot = gaussian(�, Math.PI / 12);
var len = uniform(3, 5) * curr.radius;
var endradius = uniform(�.7, �.9) *

curr.radius;

// Tree segments represented by two
// connected conic sections
var next = utils.advanceFrame(

curr, uprot, leftrot, len, endradius);
var split = utils.findSplitFrame(

curr, next);
var geom = utils.treeSegment(

prev, curr, split, next);
globalStore.geometry =

globalStore.geometry.concat([geom]);

// Recursively branch?
if (flip(�.5)) {

// Branches more likely on upward-facing
// parts of parent branch
var upnessDistrib =

utils.estimateUpness(split, next);
var theta = gaussian(

upnessDistrib[�], upnessDistrib[1]);
var branchradius = uniform(�.9, 1) *

endradius;
// Branches spawn in middle of parent
var t = �.5;
var b = utils.branchFrame(

split, next, t, theta, branchradius);
branch(r�, b.frame, �, d + 1, b.prev);

}

// Keep generating same branch?
if (flip(Math.exp(-�.1*i)))

branch(r�, next, i + 1, d, null);
}

};

var volTgt = io.loadVolumeTarget(
’targets/treeProxy_long_2.obj’);

var genTree = function() {

globalStore.geometry = [];

var start = {
center: Vector3(�, �, �),
forward: Vector3(�, 1, �),
up: Vector3(�, �, -1),
radius: uniform(1.5, 2)

};

branch(start.radius, start, �, �, null);

var geom = utils.geomerge(globalStore.geometry);

// Zero probability if self-intersects
if (geom.selfIntersects())

factor(-Infinity);

// Encourage volumetric similarity
var resolution =

volTgt.targetGrid.dims;
var grid = utils.VoxelGrid(resolution);
geom.voxelize(grid, volTgt.bounds,

resolution, true);
var percentSame =

volTgt.targetGrid.percentCellsEqual(grid);
gaussFactor(

percentSame,
1,
volTgt.percentSameSigma)

return geom;
};

// Perform inference
MCMC(genTree,

{samples: 1���, onlyMAP: true}).MAP().val;

Figure 2.5: WebPPL program for generating 3D tree skeletons.

(a) (b) (c)

Figure 2.6: 3D tree skeletons generated by the program in Figure 2.5. (a) A sample
from the prior distribution. (c) A sample from the posterior distribution, conditioned
on being volumetrically similar to the shape in (b).

CHAPTER 2. BACKGROUND 20

multiple such distinct palettes using a single run of the algorithm, but this does not

work: MH quickly gets stuck in one mode of the posterior distribution. Why does this

occur? complementarityFactor introduces a tight constraint between multiple palette

colors, and MH cannot make constraint-respecting coordinated changes to all of them

at once. In Chapter 4, we show how to get around design problems like this one using

Hamiltonian Monte Carlo.

Tight constraints make it di�cult to explore the space of program outputs, but

sometimes it can be challenging to find even one high-probability output. The recur-

sive, branching nature of the tree program in Figure 2.5 results in an exponentially-

large space of possible tree structures; long sequences of random choices must be

carefully coordinated to find a structure which matches the target volume. MCMC,

perhaps unsurprisingly, cannot perform this task reliably, and so requires many iter-

ations to converge to a matching result. In Chapter 5, we show how to more quickly

and reliably sample from programs like this one using a new variant of Sequential

Monte Carlo.

Finally, whether we use MCMC or SMC, both are random search procedures. In

Chapter 6, we explore one way of making this search less random: training neural

networks to help the program quickly seek out high-probability execution traces.

Chapter 3

Eliminating Redundant

Computation in MCMC

As mentioned in Section 2.2, there are many possible implementations of PPL infer-

ence, but one popular choice is the ‘Lightweight MH’ framework [119]. Lightweight

MH uses a source-to-source transformation to turn a probabilistic program into a

deterministic one, where random choices are uniquely identified by their structural

position in the program execution trace. Random choice values are then stored in a

database indexed by these structural ‘addresses.’ To perform a Metropolis-Hastings

proposal, Lightweight MH changes the value of a random choice and re-executes the

program, looking up the values of other random choices in the database to reuse them

when possible. Lightweight MH is simple to implement and allows PPLs to be built

atop existing deterministic languages. Users can thus leverage existing libraries and

fast compilers/runtimes for these ‘host’ languages. For example, Stochastic Matlab

can access Matlab’s rich matrix and image manipulation routines [119], WebPPL

runs on Google’s highly-optimized V8 Javascript engine [30], and Quicksand’s host

language compiles to fast machine code using LLVM [89].

Unfortunately, Lightweight MH is also ine�cient: when an MH proposal changes a

random choice, the entire program re-executes to propagate this change. This is rarely

necessary: for many models, most proposals a↵ect only a small subset of the program

21

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 22

execution trace. To update the trace, re-execution is needed only where values can

change. Under Lightweight MH, random choice values are preserved and reused when

possible, limiting the e↵ect of a proposal to a subset of the changed variable’s Markov

blanket (sometimes a much smaller subset, due to context-specific independence [7]).

Custom PPL interpreters can leverage this property to incrementalize proposal re-

execution [65], but implementing such interpreters is complicated, and using them

makes it di�cult or impossible to leverage libraries and fast runtimes for existing

deterministic languages.

In this chapter, we present a new implementation technique for MH proposals on

probabilistic programs that gives the best of both worlds: incrementalized proposal

execution using a lightweight, source-to-source transformation framework. It is es-

pecially successful at accelerating recursive probabilistic programs with many local

latent variables. Our method, C3, is based on two core ideas:

1. Continuations : Converting the program into continuation-passing style to allow

program re-execution to begin anywhere.

2. Callsite caching : Caching function calls to avoid re-execution when function

inputs or outputs have not changed.

We first describe how to implement C3 in any functional PPL with first-class func-

tions. Our implementation is integrated into the open-source WebPPL probabilistic

programming language [30]; it requires only small changes to how WebPPL programs

are normally written. We then compare C3 to Lightweight MH, showing that it gives

orders of magnitude speedups on common models such as HMMs, topic models, Gaus-

sian mixtures, and hierarchical linear regression. In some cases, C3 reduces runtimes

from linear in model size to constant. We also demonstrate that C3 is nearly an order

of magnitude faster on a complex inverse procedural modeling example.

3.1 Approach

To illustrate our approach, we use a simple example: a binary state Hidden Markov

Model program written in WebPPL (Figure 3.1 Left). This program recursively

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 23

1 // Hidden Markov Model
2 var hmm = function(n, obs) {
3 if (n === �)
4 return true;
5 else {
6 var prev = hmm(n-1, obs);
7 var state = transition(prev);
8 observation(state, obs[n]);
9 query.add(n, state);

10 return state;
11 }
12 };
13 hmm(1��, observed_data);
14 return query;

1 2 i i+1 N-1 N

Lightweight MH

+ Continuations

C3

+ Callsite Caching

Figure 3.1: (Left) A simple HMM program in the WebPPL language; the highlighted
lines involving query are the only modifications necessary to use our method with this
program. (Right) Illustrating the re-execution behavior of di↵erent MH implementa-
tions in response to a proposal to the random choice c

i

shaded in red. Lightweight
MH re-executes the entire hmm program, invoking (orange bar) and then unwinding
(blue bar) the full chain of recursive calls. Callsite caching allows re-execution to skip
all recursive calls under hmm(i-1, obs). With continuations, re-execution only has to
unwind from the continuation of choice c

i

. Combining callsite caching and continu-
ations allows re-execution to terminate upon returning from hmm(i+1, obs), since its
return value does not change.

samples latent states (inside the transition function), conditioning on the observations

in the obs list (inside the observation function). When invoked, hmm(N, obs) generates

a linear chain of latent and observed random variables (Figure 3.1 Right). The values

of the latent state variables are stored in the special query table; we will show later

how this small modification allows our method to be used with this program.

Consider how Lightweight MH performs a proposal on this program. It first runs

the program once to initialize the database of random choices. It then selects a choice

c
i

uniformly at random from this database (the red circle in Figure 3.1 Right) and

changes its value. This change necessitates a constant-time update to the score of

c
i+1. However, Lightweight MH re-executes the entire program, invoking a chain of

recursive calls to hmm (the orange bar in Figure 3.1 Right) and then unwinding those

calls (the blue bar). This process requires 2N such call visits for an HMM with N

states.

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 24

One strategy for speeding up re-execution is to cache function calls and reuse their

results if they are invoked again with unchanged inputs. We call this scheme, which

is a generalization of Lightweight MH’s random choice reuse policy, callsite caching.

With this strategy, the recursive re-execution of hmm must still traverse all ancestors

of choice c
i

but can stop at hmm(i, obs): it can reuse the result of hmm(i-1, obs), since

the inputs have not changed. As shown in Figure 3.1 Right, using callsite caching

can result in less re-execution, but it still requires ⇠ 2N hmm call visits on average.

Now suppose we instead convert the program into continuation passing style.

CPS re-organizes a program to make all data and control flow explicit—instead of

returning, functions invoke a ‘continuation’ function which represents the remaining

computation to be performed [2]. For our HMM example, by storing the continuation

at c
i

, computation can resume from the point where this random choice is made, which

corresponds to unwinding the stack from hmm(i, obs) up to hmm(N, obs). Looking at the

‘Continuations’ row of Figure 3.1, this is a significant improvement over Lightweight

MH and is also better than callsite caching. However, it still requires ⇠ N call visits.

Our main insight is that we can achieve the desired runtime by combining callsite

caching with continuations—we call the resulting system C3. With C3, re-execution

can not only jump directly to choice c
i

by invoking its continuation, but it can actually

terminate almost immediately: the cache also contains the return values of all function

calls, and since the return value of hmm(i+1, obs) has not changed, all subsequent

computation will not change either. C3 unwinds only two recursive hmm calls, giving

the desired constant-time update. Despite this early termination, the values of all

hidden states are still available in the special query table (see Section 3.3.3). Thus

C3 is more than the sum of its parts: by combining caching with CPS, it enables

incrementalization benefits that neither component can deliver independently.

In the sections that follow, we describe how to implement C3 in a functional

PPL. Specifically, we describe how to transform the program source at compile-time

(Section 3.2) to make requisite data available to the runtime caching mechanism

(Section 3.3).

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 25

3.2 Compile-time Source Transformations

// Initial HMM code
var hmm = function(n, obs) {

if (n === �)
return true;

else {
var prev = hmm(n-1, obs);
var state = transition(prev);
observation(state, obs[n]);
return state;

}
};

// After caching transform
var hmm = function(n, obs) {
if (n === �)
return true;

else {
var prev = cache(hmm, n-1, obs);
var state = cache(transition,

prev);
cache(observation, state, obs[n]);
return state;

}
};

// After function tagging transform
var hmm = tag(function(n, obs) {
if (n === �)
return true;

else {
var prev = cache(hmm, n-1, obs);
var state = cache(transition, prev);
cache(observation, state, obs[n]);
return state;

}
}, ’1’, [hmm, transition,
observation]);

Figure 3.2: Source code transformations used by C3. (Left) Original HMM code.
(Middle) Code after applying the caching transform, wrapping all callsites with the
cache intrinsic. (Right) Code after applying the function tagging transform, where
all functions are annotated with a lexically-unique ID and the values of their free
variables.

Lightweight MH transforms the source code of probabilistic programs to compute

random choice addresses; the transformed code can then be executed on existing

runtimes for the host deterministic language. C3 fits into this framework by adding

three additional source transformations: caching, function tagging, and a standard

continuation passing style transform for functional languages.

Caching This transform wraps every function callsite with a call to an intrinsic

cache function (Figure 3.2 Middle). This function performs run-time callsite cache

lookups, as described in Section 3.3. We initially left this step to the user, requiring

them to hand-annotate calls that should be cached. However, we found that with a

simple automatic cache adaptation scheme, the automatic transformation can achieve

performance close to that of the optimal hand-annotation without additional user

overhead (see Section 3.3.4)

Function tagging This transform analyzes the body of each function and tags

the function with both a lexically-unique ID as well as the values of its free variables

(Figure 3.2 Right). In Section 3.3, we describe how C3 uses this information to decide

whether a function call must be re-executed.

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 26

The final source transformation pipeline is: caching! function tagging! address

computation ! CPS. Standard compiler optimizations such as inlining, constant

folding, and common subexpression elimination can then be applied. In fact, the host

language compiler often already performs such optimizations, which is an additional

benefit of the lightweight transformational approach.

3.3 Runtime Caching Implementation

When performing an MH proposal, callsite caching aims to avoid re-executing func-

tions and to enable early termination from them as often as possible. In this section,

we describe how C3 e�ciently implements both of these types of computational ‘short-

circuiting’ for probabilistic functional programs. Figure 3.3 provides high-level code

for the main subroutines which govern the caching system.

3.3.1 Cache Representation

We first require an e�cient cache structure to minimize overhead introduced by per-

forming a cache access on every function call. C3 uses a tree-structured cache: it

stores one node for each function call, where a node’s children correspond to the

function’s callees. Random choices are stored as leaf nodes. Thus, the size of the

cache is proportional to the runtime of one complete execution of the program.

C3 also maintains a stack of nodes which tracks the program’s call stack (nodeStack

in Figure 3.3). During cache lookups, the desired node, if it exists, must be a child of

the node on the top of this stack. Exploiting this property accelerates lookups, which

would otherwise proceed from the cache root. Altogether, this structure provides

expected constant time lookups, additions, and deletions. In addition, by storing a

node’s children in execution order, C3 can e�ciently determine when child nodes have

become ‘stale’ (i.e. unreachable) due to control flow changes and should be removed.

A child node is marked unreachable when its parent begins or resumes execution

(execute line 8; propagate line 22) and marked reachable when it is executed (execute

line 2). Any children left marked unreachable when the parent exits are removed

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 27

1 // Arguments added by compiler:
2 // a: current address
3 // k: current continuation
4 function cache(a, k, fn, args) {
5 // Global function call stack
6 var currNode = nodeStack.top();
7 var node = find(a, currNode.children);
8 if (node === null) {
9 node = FunctionNode(a);

10 // Insert maintains execution order
11 insert(node, currNode.children,
12 currNode.nextChildIndex);
13 }
14 execute(node, k, fn, args);
15 }
16

17 // rc: a random choice node
18 function propagate(rc) {
19 // Restore call stack up to rc.parent
20 restore(nodeStack, rc.parent);
21 // Changes to rc may make siblings unreachable
22 markUnreachable(rc.parent.children, rc.index);
23 // Continue executing
24 rc.parent.nextChildIndex = rc.index + 1;
25 rc.k(rc.val);
26 }

1 function execute(node, k, fn, args) {
2 node.reachable = true; node.k = k;
3 node.index = node.parent.nextChildIndex;
4 // Check for input changes
5 if (!fnEquiv(node.fn, fn) || !equal(node.args, args)) {
6 this.fn = fn; this.args = args;
7 // Mark all children as initially unreachable
8 markUnreachable(this.children, �);
9 // Call fn with special continuation

10 node.nextChildIndex = �;
11 nodeStack.push(node);
12 node.entered = true;
13 fn(args, function(retval) {
14 node = nodeStack.pop();
15 // Remove unreachable children
16 removeUnreachables(node.children);
17 // Terminate early on proposals where
18 // retval does not change
19 var rveq = equal(retval, this.retval);
20 if (!node.entered && rveq) kexit();
21 else {
22 node.entered = false;
23 // retval change may make siblings unreachable
24 if (!rveq)
25 markUnreachable(node.parent.children,
26 node.index);
27 // Continue executing
28 node.retval = retval;
29 node.parent.nextChildIndex++;
30 k(node.retval);
31 }
32 });
33 } else {
34 node.parent.nextChildIndex++;
35 k(node.retval);
36 }
37 }

Figure 3.3: The main subroutines governing C3’s callsite cache. Function calls are
wrapped with cache, which retrieves (or creates) a cache node for a given address a. It
calls execute, which examines the function call’s inputs for changes and runs the call
if needed. Finally, MH proposals use propagate to resume re-execution of the program
from a particular random choice node which has been changed.

from the cache (execute line 16).

3.3.2 Short-Circuit On Function Entry

As described in Section 3.2, every function call is wrapped in a call to cache, which

retrieves (or creates) a cache node for the current address. C3 then evaluates whether

the node’s associated function call must be re-evaluated or if its previous return value

can be re-used (the execute function). Reuse is possible when the following two criteria

are satisfied:

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 28

1. The function’s arguments are equivalent to those from the previous execution.

2. The function itself is equivalent to that from the previous execution.

The first criterion can be verified with conservative equality testing; C3 uses shallow

value equality testing, though deeper equality tests could result in more reuse for

structured argument types. Deep equality testing is more expensive, though this can

be mitigated using data structure techniques such as hash consing [32] or compiler

optimizations such as global value numbering [95].

The second criterion is necessary because C3 operates on languages with first-

class functions, so the identity of the caller at a given callsite is a runtime variable.

Checking whether the two functions are exactly equal (i.e. refer to the same closure)

is too conservative, however. Instead, C3 leverages the information provided by the

function tagging transform from Section 3.2: two functions are equivalent if they have

the same lexical ID (i.e. came from the same source location) and if the values of their

free variables are equal. C3 applies this check recursively to any function-valued free

variables, and it also memoizes the result, as program execution traces often feature

many applications of the same function. This scheme is especially critical to obtain

reuse in programs that feature anonymous functions, as those manifest as di↵erent

closures for each program execution.

3.3.3 Short-Circuit On Function Exit

When C3 re-executes the program after changing a random choice (using the propagate

function), control may eventually return to a function call whose return value has not

changed. In this case, since all subsequent computation will have the same result,

C3 can terminate execution early by invoking the exit continuation kexit. During

function exit, C3’s execute function detects if control is returning from a proposal

by checking if the call is exiting without having first been entered (line 20). This

condition signals that the current re-execution originated at some descendant of the

exiting call, i.e. a random choice node.

Early termination is complicated by inference queries whose size depends on model

size: for example, the sequence of latent states in an HMM. In lightweight PPL

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 29

implementations, inference typically computes the marginal distribution on program

return values. Thus, a näıve HMM implementation would construct and return a list

of latent states. However, this implementation makes early termination impossible,

as the list must be recursively reconstructed after a change to any of its elements.

For these scenarios, C3 o↵ers a solution in the form of a global query table to which

the program can write values of interest. Critically, query has a write-only interface:

since the program cannot read from query, a write to it cannot introduce side-e↵ects in

subsequent computation, and thus the semantics of early termination are preserved.

Programs that use query can then simply return it to infer the marginal distribution

over its contents.

3.3.4 Automatic Cache Adaptation

It is not always optimal to cache every callsite: caching introduces overhead, and some

function calls almost always change on each invocation. C3 detects such callsites and

stops caching them in a heuristic process we call adaptive caching. A callsite is un-

cached if, after at least N proposals, execution has reached it M times without result-

ing in either short-circuit-on-entry or short-circuit-on-exit. We use N = 10,M = 50

for the results presented in this chapter. With these settings, we have observed mod-

est reductions in both cache size (20–65%) and running time (10–45%). These results

are also close to those given by the optimal hand-annotation of cache statements. For

example, on the LDA example presented in Section 3.4, the automatically-adapted

program has runtime within 7% of the optimally hand-annotated program. A small,

constant running time overhead remains for un-cached callsites, as calling them still

triggers a table lookup to determine their caching status. Future work could explore

e�ciently re-compiling the program to remove cache calls around such callsites.

3.3.5 Optimizations

C3 takes care to ensure that the amount of work it performs in response to a proposal

is only proportional to the amount of the program execution trace a↵ected by that

proposal. First, it maintains references to all random choices in a hash table, which

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 30

provides expected constant time additions, deletions, and random element lookups.

This table allows C3 to perform uniform random proposal choice in constant time,

rather than the linear time cost of scanning through the entire cache.

Second, proposals may be rejected, which necessitates copying the cache in case

its prior state must be restored on rejection. C3 avoids copying the entire cache

using a copy-on-write scheme with similar principles to transactional memory [38]:

modifications to a cache node’s properties are staged and only committed if the

proposal is accepted. Thus, C3 only copies as much of the cache as is actually visited

during proposal re-execution.

Finally, continuations which never return may overflow the call stack for long-

running programs. Our implementation avoids this problem via a standard tram-

polining optimization: instead of directly invoking its continuation, a CPS’ed func-

tion returns a thunk (i.e. a nullary function) which encapsulates the continuation.

The program repeatedly calls the series of returned thunks in a loop, thus executing

the program with only one function call on the stack at any time.

3.4 Experimental Results

We now investigate the runtime performance characteristics of C3. We compare C3

to Lightweight MH, as well as to systems that use only callsite caching and only

continuations. This allows us to investigate the incremental benefit provided by each

of C3’s components. Our implementation of C3 itself is available as part of the

WebPPL probabilistic programming language [30]. All timing data was collected on

an Intel Core i7-3840QM machine with 16GB RAM running OSX 10.10.2.

We first evaluate these systems on two standard generative models: a discrete-time

Hidden Markov Model and a Latent Dirichlet Allocation model. We use synthetic

data, since we are interested purely in the computational e�ciency of di↵erent im-

plementations of the same statistical inference algorithm. The HMM program uses

10 discrete latent states and 10 discrete observable states and returns the sequence

of latent states. We condition it on a random sequence of observations, of increasing

length from 10 to 100, and run each system for 10000 MH iterations, collecting a

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 31

10 20 30 40 50 60 70 80 90 100
HMM - Number of Observations

0

5

10

15

20

Ti
m

e
(s

ec
)

Method
C3
Caching Only
CPS Only
Lightweight MH

10 20 30 40 50 60 70 80 90 100
HMM - Number of Observations

0K

2K

4K

6K

8K

10K

12K

Th
ro

ug
hp

ut
 (p

ro
po

sa
ls

/s
ec

)

5 10 15 20 25 30 35 40 45 50
LDA - Number of Documents

0

5

10

15

20

Ti
m

e
(s

ec
)

5 10 15 20 25 30 35 40 45 50
LDA - Number of Documents

0K

1K

2K

3K

4K

Th
ro

ug
hp

ut
 (p

ro
po

sa
ls

/s
ec

)

Figure 3.4: Comparing the performance of C3 with other MH implementations. (Top)
Performing 10000 MH iterations on an HMM program. (Bottom) Performing 1000
MH iterations on an LDA program. (Left) Wall clock time elapsed, in seconds.
(Right) Sampling throughput, in proposals per second. 95% confidence bounds are
shown in a lighter shade. Only C3 exhibits constant asymptotic complexity for the
HMM; other implementations take linear time, exhibiting decreasing throughput.

sample every 10 iterations. The LDA program uses 10 topics, a vocabulary of 100

words, and 20 words per document. It returns the distribution over words for each

topic. We condition it on a set of random documents, increasing in size from 5 to 50,

and run each system for 1000 MH iterations.

Figure 3.4 shows the results of this experiment; all quantities are averaged over

20 runs. We show wall clock time in seconds (left) and throughput in proposals

per second (right). For the HMM, C3’s runtime is constant regardless of model

size, whereas Lightweight MH and CPS Only exhibit the expected linear runtime

(approximately 2N and N , respectively). As discussed in Section 3.1, Caching Only

has the same complexity as Lightweight MH but is a constant factor slower due to

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 32

Method

0 50 100 150
Time (sec)

C3
Caching Only

CPS Only
Lightweight MH

Method

0 100 200 300 400 500 600
Throughput (proposals/sec)

C3
Caching Only

CPS Only
Lightweight MH

Figure 3.5: Comparing C3 and Lightweight MH on an inverse procedural modeling
program. (Left) Desired tree shape. (Middle) Example output from inference over a
tree program given the desired shape. (Right) Performance characteristics of di↵erent
MH implementations. C3 delivers nearly an order of magnitude speedup.

caching overhead. For the LDA model, Lightweight MH and CPS Only all exhibit

asymptotic complexity comparable with their performance on the HMM. However,

Caching Only performs significantly better. The LDA program is structured with

nested loops; caching allows re-execution to skip entire inner loops for many proposals.

Caching Only must still re-execute all ancestors of a changed random choice, though,

so it is slower than C3, which jumps directly to the change point. C3 does not

achieve exactly constant runtime for LDA because a small percentage of its proposals

a↵ect hierarchical variables, requiring more re-execution. This is a characteristic of

hierarchical models in general; in this specific case, conjugacy could be leveraged to

integrate out higher-level variables.

We also evaluate these systems on an inverse procedural modeling program. Pro-

cedural models are programs that generate random 3D models from the same family.

Inverse procedural modeling infers executions of such a program that resemble a tar-

get output shape [112]. We use a simple grammar-like program for tree skeletons

presented in prior work, conditioning its output to be volumetrically similar to a

target shape [91]. We run each system for 2000 MH iterations.

Figure 3.5 shows the results of this experiment. C3 achieves the best performance,

delivering nearly an order of magnitude speedup over Lightweight MH. Using caching

only does not help in this example, since re-executing the program from its beginning

reconstructs all of the recursive procedural modeling function’s structured inputs,

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 33

whose equality is not captured by our cache’s shallow equality tests.

Finally, the figure below shows the results of a wider evaluation: for four models,

we plot the speedup obtained by C3 over Lightweight MH (in relative throughput)

as model size increases. The four models are: the HMM and LDA models from Fig-

ure 3.4, a one-dimensional finite Gaussian mixture model (GMM), and a hierarchical

linear regression model (HLR) [126]. The 1-10 normalized Model Size parameter

maps to a natural scale parameter for each of the four models; details are available

in Appendix A. While C3 o↵ers only small benefits over Lightweight MH for small

models, it achieves dramatic speedups of 20-100x for large models.

1 2 3 4 5 6 7 8 9 10
Model Size

0x

20x

40x

60x

80x

S
pe

ed
up

Model
HMM
LDA
GMM
HLR

3.5 Related Work

The ideas behind C3 have connections to other areas of active research. First, in-

crementalizing MCMC proposals for PPLs falls under the umbrella of incremental

computation [87]. Much of the active work in this field seeks to build general-purpose

languages and compilers to incrementalize any program [11]. However, there are also

systems such as ours which seek simpler solutions to domain-specific incrementaliza-

tion problems. In particular, C3’s callsite caching mechanism was inspired in part by

recent work in computer graphics on hierarchical render caches [123].1

1An incomplete, undocumented version of C3’s callsite caching mechanism also appears in the
original MIT-Church implementation of the Church probabilistic programming language [29].

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 34

C3 bears similarity to the CPS-based self-adjusting computation system developed

by Ley-Wild and colleagues [60]. Both this system and C3 use continuations to ap-

proximate dynamic data dependencies, and both use some form of function caching to

avoid re-executing unchanged computations. Their system aims for generality, using

a compiler infrastructure that supports arbitrary changeable data and computation

reuse. The restricted needs of our application—MH proposal computation—allow

C3 to use a simpler strategy: only random choices are changeable, and computa-

tion is only reused from the previously-accepted program execution. This approach

is consistent with our goal of keeping the system lightweight. It also has e�ciency

benefits: since Ley-Wild’s system allows arbitrary changes to data, its change prop-

agation mechanism must examine all of the previous execution’s reads and writes to

changeable data to ensure that they are consistent with the data’s current value. In

contrast, C3 knows that a proposal makes exactly one change (i.e. to a random choice

value), so it can start change propagation from the continuation at that point, as well

as terminate change propagation as soon as any function’s return value is unchanged.

This ability, along with e�cient random choice lookup and cache copy-on-write, en-

ables asymptotically constant-time proposals when the model’s dependence structure

supports them.

The Venture PPL features an algorithm to incrementally update a probabilistic

execution trace in response to a random choice change [65]. Implemented as part of

a custom interpreter, this method walks the trace starting from the changed node,

identifying nodes which must be updated or removed, and determining when re-

evaluation can stop. C3 performs a similar computation but uses continuations to

traverse the execution trace rather than maintaining a complete interpreter state.

The Shred system also incrementalizes MH updates for PPLs [126]. Shred traces

a program to remove its control flow and then uses data-flow analysis to produce in-

cremental update procedures for each random choice. This process produces very fast

proposal code, but it requires significant implementation cost, and its re-compilation

overhead grows very large for programs with high control-flow variability, such as

PCFGs. C3’s caching scheme is a dynamic analog to Shred’s static slicing which does

not have compilation overhead but may not be as fast for models with fixed control

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 35

flow.

The Swift compiler for the BLOG language is another recent system supporting

incrementalized MCMC updates [61]. Unlike the above systems, BLOG/Swift uses a

possible-world semantics for probabilistic programs, representing program state as a

graphical model whose structure changes over time. Swift tracks the Markov Blanket

of this model, computing incremental updates to it as model structure changes, al-

lowing it to make e�cient MCMC proposals. C3 does not explicitly compute Markov

blankets, but its short-circuiting facilities limit re-execution to the subset of a changed

variable’s Markov blanket that is a↵ected by the change.

3.6 Chapter Summary

This chapter presented C3, a lightweight, source-to-source compilation system for in-

crementalizing MCMC updates in probabilistic programs. We have described how

C3’s two main components, continuations and callsite caching, allow it both to

avoid re-executing function calls and to terminate re-execution early. Our experi-

mental results show that C3 can provide orders-of-magnitude speedups over previous

lightweight inference systems on typical generative models. It even enables constant-

time updates in some cases where previous systems required linear time. We also

demonstrate that C3 improves performance by nearly 10x on a complex, compute-

heavy inverse procedural modeling problem. Our implementation of C3 is freely

available as part of the open-source WebPPL probabilistic programming language.

C3 provides the most benefit for models where the number of latent variables grows

with the dataset size. For models with a small number of global latent variables, C3

will not provide any speedup, and in fact the cache overhead may result in a small

constant factor slowdown (though adaptation will remove almost all cache lookups

in such cases). This is less a limitation of C3 and more an intrinsic expense of such

models: any MH implementation will have to completely re-execute on each proposal.

For the Bayesian data analysis models we showed in this chapter, much of C3’s

performance boost comes from its ability to terminate execution early, i.e. achieving

constant-time updates for the HMM program. However, programs for which early

CHAPTER 3. ELIMINATING REDUNDANT COMPUTATION IN MCMC 36

termination is not possible can still see significant performance benefits. For example,

when the program involves extensive recursive branching, as in the procedural tree

program of Section 3.4, C3 can prune large sub-trees from the overall execution trace.

Chapter 4

Exploring Tightly-Constrained

Design Spaces

Figure 4.1: Physical realizations of stable structures generated by our system. To
create these structures, we write programs that generate random structures (e.g. a
random tower or a randomly-perturbed arch), constrain the output of the program to
be near static equilibrium, and then sample from the constrained output space using
Hamiltonian Monte Carlo.

Considering multiple possibilities is critical in design. Exposure to di↵erent ex-

amples facilitates creativity—for instance, prototyping multiple alternatives can lead

to better-quality final designs [56, 22]. Exploring the whole space of creative options

37

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 38

seems to help people avoid fixation and overcome their unconscious biases [49]. Com-

putation can assist with this exploration by generating suggestions: given a model

of the design space, computers can synthesize examples that their users might never

have thought of independently. As we argue throughout this thesis, modeling the de-

sign space with probabilistic programs provides a powerful combination of generative

logic plus constraints.

Real design applications feature a range of constraints, from vague preferences

that loosely shape the design space (“Make this object a reddish color”) to strict re-

quirements that eliminate entire regions of the space as undesirable (“This container

must hold one liter of liquid, up to manufacturing tolerance”). But the tighter these

constraints, the more ill-conditioned the underlying probability distribution becomes.

As we will show, basic random walk MCMC methods (such as Lightweight MH and

C3) break down when faced with tight constraints, especially in high-dimensional

design spaces. To work around this problem, developers can implement complex,

application-specific MCMC algorithms that exploit knowledge of constraint struc-

ture [48, 98]. This strategy does not scale, however, as it requires new algorithms be

developed for each new application. General-purpose solutions would be preferable,

especially for use with probabilistic programming.

In this chapter, we take a step toward solving this problem by adopting a di↵er-

ent sampling algorithm: Hamiltonian Monte Carlo (HMC). HMC is used in Bayesian

statistics to train predictive models with many parameters [76]. It excels when the

posterior distribution of the parameters given training data causes some parame-

ters to become highly correlated—the same statistical problem as design variables

being strongly coupled by tight constraints. Its performance comes from using the

gradient of the probability distribution to take less-random walks through the state

space. This gradient can be computed automatically, making HMC a general-purpose,

application-agonistic tool. HMC operates on continuous design domains (i.e subsets

of Rn). This property makes it a tool well-suited to graphics applications, since they

often feature many continuous quantities (positions, directions, dimensions, colors,

etc.)

To evaluate the usefulness of HMC for design suggestion tasks, we implemented the

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 39

algorithm in Quicksand, an open-source probabilistic programming language embed-

ded in the Terra language for high-performance computing [89, 18]. We then use our

implementation to generate suggestions for two di↵erent example applications: vec-

tor art coloring and designing stacking structures. These applications employ several

challenging and generally-useful constraints, such as physical stability and symmetry.

We compare the performance of HMC to classical random walk MCMC on these two

examples, demonstrating that HMC provides both qualitatively and quantitatively

better design space exploration in the presence of tight constraints.

4.1 Related Work

4.1.1 Design Space Exploration

Design space exploration in computer graphics can be traced back at least as far

as the seminal work on Design Galleries by Marks and colleagues [66]. Exploration

can be divided into two phases: generating suggestions and navigating between those

suggestions. Our work focuses on generating suggestions; other researchers have

examined the navigation problem [3, 113].

Researchers have experimented with di↵erent algorithmic frameworks for generat-

ing design suggestions, including genetic algorithms [124], nonlinear manifold explo-

ration [127], and probabilistic inference [46, 112, 69]. Our system uses probabilistic

inference, and the particular inference algorithm it relies on, Hamiltonian Monte

Carlo, shares some mathematical similarities with manifold exploration methods.

Design domains can contain discrete variables, continuous variables, or some com-

bination of both. Several existing design suggestion methods operate on purely dis-

crete design spaces, including shape generation by part combination [50, 47] and tiled

pattern synthesis [128]. In contrast, our work focuses on continuous design spaces,

which are often used to model quantities such as positions, directions, sizes, and

colors. In the mixed discrete/continuous regime, an important subclass of design

spaces are those where discrete choices dictate the structure of a continuous parame-

ter set [129, 27]. The techniques presented in this chapter can be also applied to the

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 40

continuous subsets of these domains, for a fixed setting of the discrete choices.

Probability distributions over design spaces are typically complex, and researchers

have explored techniques to make sampling from them more tractable. Parallel tem-

pering, which assists samplers when probability mass is concentrated around multiple

modes, is one notable example [112, 69, 62]. In contrast, the techniques we present

help when probability mass is concentrated along thin manifolds. The two methods

can be used in concert if a design space exhibits both multi-modality and manifold

structure.

4.1.2 HMC Applications

HMC has been applied in other areas that require searching through complex design

spaces. It has found use in trajectory optimization for robot motion planning [134]. It

has also been applied in 3D printing for estimating and correcting material shrinkage

during the printing process [41]. Both of these e↵orts are concerned with optimization

problems: they attempt to find the best possible solution in a large design space. In

contrast, we seek to explore large sets of possibilites in design spaces.

HMC also been applied to probabilistic programs. One such e↵ort implements

HMC in the Church programming language by viewing the gradient computation as

a non-standard interpretation of the program [118]. The Stan inference system also

uses a variant of HMC to perform inference in user-programmable generative mod-

els [?]. For experimenting with graphics applications, we chose to implement HMC

in Quicksand [89]. Quicksand generates high-performance, low-level code (whereas

Church is a high-level, functional language) and is a general-purpose programming

language (whereas Stan uses a statistical modeling domain-specific language)—these

properties make it easier to e�ciently express graphics programs.

4.2 The Problem: Tight Constraints

To illustrate the problem posed by tight constraints, we examine a token example

application, constraining the position of a 2D point, that evokes the kind of constraints

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 41

that can arise in spatial layout tasks.

Suppose we constrain the position of a point (x, y) with the following energy

penalty:

softeq(y4 � y2 + x2 � 0.25, 0, �) (4.1)

Here, the ‘soft equality’ function softeq(z, µ, �) is an alias for the log of the normal

distribution with mean µ and variance �2 evaluated at z (i.e. logN (z, µ, �)). In

this case, it penalizes points that fall too far from the 0-isocontour of the function

y4 � y2 + x2 � 0.25. The bandwidth � controls the tightness of this factor, or how

aggressively it applies its penalty. The top left of Figure 4.2 shows the probability

density ⇡(x, y) that results from setting � = 0.1.

To sample from such a distribution, we could use MH: take some initial current

state (x0, y0), propose a new state (x̃0, ỹ0), and then accept that state if its probability

does not decrease by too much. If the proposed state is accepted, it becomes the new

current state (x1, y1), and the process repeats. A simple, popular choice of proposal

strategy is to construct (x̃0, ỹ0) by choosing one of x0 or y0 at random and making a

small random perturbation to it. The top middle of Figure 4.2 shows 2000 samples

drawn from ⇡(x, y) using MH. The samples form a good approximation to the true

distribution.

The same does not hold when the constraint is tightened by decreasing � to 0.005.

The bottom left of Figure 4.2 shows the new probability density ⇡0(x, y); the narrow

ridges of high probability reflect the tightened constraint. Running MH for the same

number of samples on this new distribution gives the result in the bottom middle of

Figure 4.2. While MH finds its way to a high-probability region (the phase of sampling

statisticians call burn-in), it does not fully explore the distribution. Most random

perturbations push the point (x, y) o↵ the narrow, high probability ridges, so the

perturbation size must be made very small. We also color sample points by time; the

spatially-contiguous regions of constant color illustrate the sampler’s slow progress.

This is a two-dimensional example chosen for ease of visualization; we could exploit

this low-dimensionality and our knowledge of the distribution’s symmetry to do better

via brute force. Unfortunately, this isn’t possible for high-dimensional distributions

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 42

� =
0.1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

� =
0.005

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Density MH HMC

Figure 4.2: Tight constraints in action on a simple 2D example. Top left: The
probability density of Equation 4.1 with � = 0.1. Top middle: Samples drawn from
this density using MH. Bottom left: The probability density of Equation 4.1 with
� = 0.005. Bottom middle: Samples drawn from this density using MH. Bottom right:
Samples drawn from this density using HMC. HMC fully explores the distribution
when constraints are tight, while MH does not. Samples are colored by time to
illustrate the dynamics of the two algorithms.

with unknown shape, where the variable-coupling problem becomes even worse for

MH [76].

We can quantify MH’s poor performance using autocorrelation, a measure of how

similar successive samples are to one another. This is a standard test for assessing

MCMC performance for Bayesian statistics [51]. The green line in Figure 4.3 shows

the autocorrelation plot of the MH sampling trace, which is far from the ideal value

of zero: since the sampler is stuck in the same part of the state space, many samples

are similar, so autocorrelation remains high.

Hamiltonian Monte Carlo performs both qualitatively and quantitatively better

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 43

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−1

−0.5

0

0.5

1

Lag

Au
to

co
rre

la
tio

n

HMC
MH

Figure 4.3: Autocorrelation plots for the samples show in the bottom row of Fig-
ure 4.2. HMC oscillates around zero (the ideal value), while MH never approaches
this target.

on this example. The bottom right of Figure 4.2 shows samples drawn from ⇡0(x, y)

by HMC given the same computational budget as MH. Visually, these samples rep-

resent the distribution much better, and autocorrelation quickly drops to near-zero

(Figure 4.3, blue line).

The way HMC works can be explained by physical analogy. If we invert the

probability density landscape in the bottom left of Figure 4.2, the thin ridges become

narrow valleys. Imagine placing a ball in one of these valleys and rolling it in some

random direction. It would roll up and down the surrounding walls, but it would

also make progress down the length of the valley. This is the core process underlying

Hamiltonian Monte Carlo: it runs a simulation of frictionless Hamiltonian dynamics

using the negative log probability � log ⇡0(x, y) as its potential energy.

In the next section, we describe the Hamiltonian Monte Carlo algorithm and our

implementation of it in more detail. We then evaluate our system on two di↵erent

design suggestion tasks: coloring vector art, and designing stable stacking structures

(Section 4.4).

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 44

4.3 Hamiltonian Monte Carlo

As shown in the previous section, using MH can result in a sampler that moves very

slowly across the state space—producing highly-correlated samples—when multiple

variables are strongly coupled by tight constraints.

Hamiltonian Monte Carlo (HMC) is a variant of MCMC that can e�ciently ex-

plore highly-coupled, high-dimensional continuous distributions. It was originally

developed for lattice field theory simulations in statistical physics [23], but has since

seen increasing adoption in the Bayesian statistics community (see Neal [76] for an

excellent overview and survey).

HMC derives its name from Hamiltonian dynamics, which it uses to generate

proposals. For this purpose, Hamiltonian dynamics specify the behavior of a friction-

less, unit-mass particle with some position x and momentum p. At a given point in

time, the particle has kinetic energy K(p) = pTp/2 and potential energy U(x) =

� log ⇡(x), the sum of which is called the Hamiltonian: H(x,p) = K(p) + U(x).

Given a current state x from state space X, HMC generates proposals as follows:

1. Sample a random momentum p ⇠ N (·, 0, In).

2. Simulate the dynamics of the particle (x,p) for L time steps, resulting in the

particle (x0,p0).

3. Accept the new particle with probability

min[1, exp(H(x,p)�H(x0,p0))].

Essentially, HMC performs a Metropolis Hastings propose + accept step on an aug-

mented state space where the states are (x,p) 2 Rn⇥Rn. Instead of walking through

the state space with single steps in random directions, HMC follows long, multi-step

paths along the energy landscape defined by � log ⇡(x). When this landscape is de-

fined by constraints, as in our applications, adhering to its contours corresponds to

constraint satisfaction.

To perform Step 2 above, we must simulate the time evolution of our fictitious

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 45

particle. This is governed by the di↵erential equations:

dx

dt
= r

p

H(x,p) = rK(p) = p

dp

dt
= �r

x

H(x,p) = �rU(x) = r log ⇡(x)

which are numerically simulated using the discrete-time update rules

p(t+
✏

2
) = p(t) +

✏

2
r log ⇡(x(t))

x(t+ ✏) = x(t) + ✏p(t+
✏

2
)

p(t+ ✏) = p(t+
✏

2
) +

✏

2
r log ⇡(x(t+ ✏))

known as the leapfrog integrator [57]. The leapfrog scheme has two critical properties

that make it work for HMC proposals. First, it is a symplectic integrator (i.e. the

map from X to X that it defines preserves volume). Second, it is time-reversible: if

leapfrog((x,p), ✏) = (x0,p0), then leapfrog((x0,�p0), ✏) = (x,�p). In other words,

flipping the direction of momentum and simulating ‘backwards’ returns the system

to the state from which it started. These properties are key to proving that HMC

satisfies the detailed balance condition and thus defines a valid MCMC sampler [76].

Parameters HMC has two parameters: the number of leapfrog steps L and the

simulation step size ✏. The tighter the constraints used in a particular application,

the smaller ✏must be to keep the Hamiltonian dynamics simulation numerically stable.

Consequently, the number of steps L must increase for HMC proposals to make

progress exploring the state space. We use a method proposed by Ho↵man and

Gelman [40] to automatically set ✏ and leave L as the only free parameter in the

system. We found L = 100 to be su�cient for most of our experiments. There is

also a variant of HMC that attempts to automatically, adaptively determine L as it

traverses the state space [40].

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 46

Bounded variables Many design applications require variables with strict bounds

(e.g. “this object must be between 10 and 50 cm long”). These can be incorpo-

rated into HMC via variable transformation: letting a variable x be unbounded, but

transforming it such that the value x̃ exposed to the program is bounded. For a

variable with both a lower bound l and an upper bound u, the typical transformation

is logistic:

x̃ = l + (u� l) · 1

1 + exp(�x)

Similar transforms exist for one-sided bounds [104].

Implementation We implemented Hamiltonian Monte Carlo in Quicksand, a prob-

abilistic programming language embedded in Terra [89, 18]. We chose this implemen-

tation target because Terra is a low-level language that compiles to e�cient ma-

chine code, which we believe to be important for achieving su�cient performance for

graphics applications. We implement HMC as a custom MCMC kernel in Quicksand.

Quicksand supports inference over arbitrary programs, including recursive programs

and programs whose set of random choices may change based on control flow deci-

sions. Since HMC operates on Rn, we can only use HMC to explore parts of the

execution space with a fixed set of random choices. HMC could be composed with

other Quicksand MCMC kernels (such as LARJ-MCMC [129]) to perform inference

on structure-changing programs.

Our system uses automatic di↵erentiation (AD) to compute the gradients required

by HMC, relieving the user of having to derive gradients manually. In particular,

it uses reverse-mode AD, which computes the gradient in just two passes over the

program, regardless of state space dimensionality [14, 102]. E�cient symbolic di↵er-

entiation could also be used for some parts of the program and might further improve

performance [34].

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 47

4.4 Evaluation

We use our implementation to evaluate the usefulness of HMC for computational

design by generating suggestions for two example applications: vector art coloring

and building stacking structures. These are two unrelated application domains that

both require tight constraints to eliminate undesirable regions of the design space.

We compare the statistical e�ciency of HMC with MH and show that HMC’s im-

proved e�ciency leads to qualitatively better suggestion results. For fair comparison,

we initialize each algorithm by burning in for a fixed number of MH iterations. In

all experiments, MH proposal bandwidths are automatically adapted to give ⇠ 23%

acceptance, and HMC steps sizes are automatically adapted to give ⇠ 65% accep-

tance. Selecting a good target acceptance rate can be highly problem-specific, but

there is theoretical evidence that these are good general settings for their respective

algorithms [94]. Each algorithm is allotted the same computational budget in terms

of program evaluations. An HMC sampler with L leapfrog steps uses 2L as many

evaluations to generate a sample as an MH sampler (the factor of 2 comes from the

reverse-mode AD backwards pass). So if the HMC sampler runs for 1000 iterations

using 100 leapfrog steps, MH is allowed to run for (2 · 100) · 1000 = 200000 iterations.

We also collect timing data to demonstrate that our implementation generates

suggestions quickly enough for practical use. All timing information reported in the

following experiments was collected on an Intel Core i7-3840QM machine with 16GB

RAM running OSX 10.8.5.

Finally, source code for these examples is available on GitHub at https://github.

com/dritchie/graphics-hmc.

4.4.1 Vector Art Coloring

In vector illustrations, a significant portion of a design’s visual impact comes from

color choice. Designers must consider semantics as well as aesthetics to create plau-

sible and harmonious colorings. For example, certain objects may be strongly associ-

ated with specific colors (e.g. sky to blue), regions that are part of the same material

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 48

Image Constraints HMC Samples with Semantic Constraints Unconstrained

Figure 4.4: Vector art colorings with and without semantic constraints. Image: The
image template, which maps individually-recolorable regions to di↵erent grayscale
levels. Constraints: Visualization of the applied constraints. Same-Chroma con-
straints over regions are visualized with the same hue. White regions have no hue
constraints. Lightness-Relation constraints for regions of the same hue are visualized
with darker or lighter shades. Additional Lightness-Relation constraints are as fol-
lows : Robot : eye centers lighter than helmet lights, helmet lights lighter than helmet
and robot body, number “5” darker than body. House: sky lighter than roof and
tree highlights, lineart darker than shadows. Rocket : lineart darker than space, stars
lighter than middle flame, window darker than rocket body.

may need to have similar hues, and shading e↵ects may dictate that some regions

should be lighter than others.

Previous work has modeled the compatibility of color combinations and arrange-

ments [78, 77, 62]. For pattern images, Lin and colleagues introduce a coloring model

composed of soft constraints learned from artist examples [62]. Their system uses

MH, augmented with variable swaps and parallel tempering for faster exploration of

multiple modes, to sample coloring suggestions from the learned model.

To compare the e↵ectiveness of HMC to MH for coloring constrained vector art,

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 49

we add tight semantic constraints to a simplified version of the coloring model by Lin

and colleagues. Specifically, we add Same-Chroma constraints, which enforce that

two regions should have the same chromatic content (i.e. the same color irrespective

of lightness), and Lightness-Relation constraints, which enforce that one region should

be brighter or darker than another. These constraints are much tighter than the soft

constraints that comprise the base model, and thus they are likely to cause trouble

for MH. Refer to Appendix B for the full specification of our coloring model.

Figure 4.4 shows examples of sampling from three vector art images using HMC

under multiple Same-Chroma and Lightness-Relation constraints. The first and sec-

ond columns of the figure show the vector art template and a visualization of the

semantic constraints applied. Under these tight constraints, HMC is still able to

sample a variety of di↵erent colorings.

In Figure 4.5, we compare the performance of HMC and MH under the same com-

putational budget. We ran the HMC sampler for 1000 iterations using 100 leapfrog

steps and the MH sampler for the equivalent of 1000 HMC iterations (200000 iter-

ations). The first two columns show ‘coverage maps’ for the two sampling traces,

where stronger blue regions indicate that more colors were sampled for that region

and that the sampler is exploring the space better. To compute coverage, we dis-

cretize CIELAB space into 256 bins (4x8x8) and count the percentage of bins visited

for each region. HMC consistently samples more colors than MH. The background

in the Bug example has high coverage under MH because it does not participate in

any semantic constraints. The third column shows autocorrelation plots for the runs,

again demonstrating that the MH samples are more self-similar.

Timings for these examples are shown in Figure 4.6. We report the time consumed

by the burn-in phase (the ‘start-up cost’ of the system), the time taken by sampling

(when the system is generating useful suggestions) as well as the acceptance ratio

of the HMC sampler. The HMC sampler draws around 60 new samples per second

(number of samples drawn multiplied by acceptance rate and divided by sampling

time). Rates such as these should be su�cient for use in an interactive coloring tool.

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 50

HMC MH Autocorr.

0 500 1000

−1

−0.5

0

0.5

1

Lag

Au
to

co
rre

la
tio

n

HMC
MH

0 500 1000

−1

−0.5

0

0.5

1

Lag

Au
to

co
rre

la
tio

n

HMC
MH

0 500 1000
−1

−0.5

0

0.5

1

Lag

Au
to

co
rre

la
tio

n

HMC
MH

0 500 1000
−1

−0.5

0

0.5

1

Lag

Au
to

co
rre

la
tio

n

HMC
MH

Figure 4.5: The first two columns show coverage plots for HMC and MH sampling
on the three image templates. Darker shades of blue indicate that more colors were
sampled for the given region, while white indicates fewer colors sampled. Colors
are counted by discretizing CIELAB space into 256 bins. The last column shows
autocorrelation plots comparing HMC and MH.

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 51

Example |X| Burn-in Sampling Accept. ratio

Robot (MH) 57 0.12 s 12.66 s 0.24

Robot (HMC) 57 0.12 s 10.61 s 0.65

House (MH) 60 0.13 s 13.38 s 0.24

House (HMC) 60 0.13 s 10.67 s 0.65

Bug (MH) 30 0.06 s 6.08 s 0.24

Bug (HMC) 30 0.06 s 3.56 s 0.63

Rocket (MH) 60 0.12 s 14.53 s 0.23

Rocket (HMC) 60 0.12 s 10.61 s 0.63

Figure 4.6: Timing data for the examples shown in Figure 4.4. |X| is the number of
random choices made by a program.

4.4.2 Stable Stacking Structures

People are fascinated with the stability of physical structures. The Leaning Tower

of Pisa draws over a million visitors each year, games such as Hasbro’s Jenga and

Areaware’s Balancing Blocks have enduring popularity, and balancing rock sculptures

have become a form of performance art (Figure 4.7). In this section, we consider the

computational design of stacking structures made of rigid blocks that remain stable

despite their apparent precariousness.

Prior work has addressed the stability of design artifacts in domains such as truss

structure design, 3D printing, and procedural building grammars [101, 83, 116]. These

projects pose stability as an optimization problem: given an initial input object (e.g. a

3d model or procedural grammar derivation), seek toward a configuration of the object

that is stable. In contrast, we wish to explore the variety of possible configurations

of a given structure that will stand.

For a rigid structure to be stable, it must be in static equilibrium: the net force

and net torque on every component must be zero. In general, these forces are not

directly computable from the structure’s geometry but are defined implicitly by this

equilibrium condition. We can think of them as random variables whose values are

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 52

Figure 4.7: Real-world inspiration for our stable stacking application. Left:
Areaware’s Balancing Blocks game. Right: Balancing rock sculpture.

tightly coupled by the equilibrium constraint. This suggests a simple generative

model for creating stable structures: generate a random block structure, introduce

latent variables representing forces between blocks, encourage equilibrium with a tight

constraint, and sample from the resulting distribution using HMC. See Appendix B

for the full specification of our statics model.

To keep our example application simple, we consider only convex, hexahedral

blocks. While this simplification does not capture all the rich detail of stacking

structures in the real world (e.g. the irregular convex polyhedra in Figure 4.7, left),

it admits a wide range of stacking arrangements.

Figure 4.8 shows some examples of sampling from a random block stacking pro-

gram using both HMC and MH. We show three interesting structures sampled by

HMC, as well as the ‘average’ structure produced by both algorithms. We also com-

pare the autocorrelation curves of the two sample traces, where autocorrelation is

computed by reducing each structure to a vector of all block vertex positions. We

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 53

HMC Samples HMC Avg. MH Avg. Autocorr.
S
ta
ck

0 50 100 150 200

−15

−10

−5

0

5

10

15

Lag

Au
to

co
rre

la
tio

n

HMC
MH

L
ea
n

0 50 100 150 200

−10

−5

0

5

10

Lag

Au
to

co
rre

la
tio

n

HMC
MH

T
op

H
ea
vy

0 50 100 150 200
−8

−6

−4

−2

0

2

4

6

8

Lag

Au
to

co
rre

la
tio

n

HMC
MH

Figure 4.8: Generating stable block stacks with di↵erent criteria. Top: A stack with
no additional constraints. Middle: Encouraging the stack to lean in a particular di-
rection. Bottom: Encouraging each block to be twice as large as the block below
it. For each scenario, we show three HMC samples, the average of all samples gen-
erated by each method (200 for HMC, 400000 for MH), and a comparison of their
autocorrelation curves.

ran the HMC sampler with 1000 leapfrog steps for 200 samples and the MH sampler

for the equivalent of 200 HMC samples (400000 iterations).

The top row shows results from the stacking program. In the middle row, we add

a factor to encourage the stack to lean in a particular direction by penalizing the

distance of each block’s center of mass to a target line. We also generate precarious-

looking ‘top-heavy’ stacks by adding a factor that encourages each block’s volume to

be twice as large as that of the block below it (bottom row). HMC has little trouble

exploring the complex probability landscape induced by the stability constraint, but

MH struggles, seeking out a local maximum and barely deviating from it. MH gener-

ates small structures because we initialize the latent force variables to zero, so it can

quickly minimize force and torque residuals by shrinking all blocks to the minimum

size allowed by the program.

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 54

HMC Samples HMC Avg. MH Avg. Autocorr.
P
la
tf
or
m
s

0 50 100 150 200

−4
−3
−2
−1

0
1
2
3
4

Lag

Au
to

co
rre

la
tio

n

HMC
MH

W
he
el

0 50 100 150 200

−1.5

−1

−0.5

0

0.5

1

1.5

Lag

Au
to

co
rre

la
tio

n

HMC
MH

T
ri
A
rc
h

0 50 100 150 200

−6

−4

−2

0

2

4

6

Lag

Au
to

co
rre

la
tio

n

HMC
MH

Figure 4.9: Generating stacking structures with more complex, cyclical topologies.

Figure 4.9 shows this same comparison with programs that generate more topologically-

complex structures. HMC again successfully samples many interesting configurations

of these structures, whereas MH again becomes stuck. The complex, cyclical contact

relationships in these examples make the space of stable configurations more tightly

constrained than in the examples of Figure 4.8. This video shows animations of some

of these sample traces which better illustrate the dynamics of the di↵erent algorithms:

https://www.youtube.com/watch?v=Ymtl-w_97sU.

Since it uses softened constraints, HMC in general cannot guarantee that the

structures it samples will be exactly in equilibrium, only that they will be close to it.

Thus, these examples need more leapfrog steps (1000) because constraint bandwidths

have to be kept very tight to keep the sampler su�ciently close to the static equilib-

rium manifold (see Appendix B). We used a linear program solver to check whether

each generated structure satisfies the equilibrium equations, and nearly all of them

do.

Timing statistics for these examples are shown in Figure 4.10. In general, running

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 55

Example |X| Burn-in Sampling Accept. ratio

Stack (MH) 118 30.57 s 65.22 s 0.23

Stack (HMC) 118 36.30 s 148.76 s 0.61

Lean (MH) 118 24.10 s 48.39 s 0.23

Lean (HMC) 118 27.90 s 118.86 s 0.62

TopHeavy (MH) 118 33.35 s 58.48 s 0.23

TopHeavy (HMC) 118 38.04 s 186.62 s 0.59

Platforms (MH) 330 62.52 s 118.75 s 0.25

Platforms (HMC) 330 62.54 s 279.9 s 0.59

Wheel (MH) 555 93.76 s 688.70 s 0.26

Wheel (HMC) 555 98.04 s 729.54 s 0.63

TriArch (MH) 555 94.90 s 191.25 s 0.26

TriArch (HMC) 555 95.5 s 700 s 0.62

Figure 4.10: Timing data for the examples shown in Figures 4.8 and 4.9. |X| is the
number of random choices made by a program.

time scales linearly with the complexity of block topology. The sampling rate is lower

than in the coloring examples, since the complexity of the static equilibrium constraint

necessitates taking more small leapfrog steps. Each step is also more expensive, since

the statics model requires more computation and makes many more random choices.

To illustrate another use of tight constraints, Figure 4.11 shows three structures

generated from a simple arch program and the TriArch program with an additional

bilateral symmetry constraint. Adding this constraint takes very little extra e↵ort in

our system: the program simply reflects the structure about the symmetry plane and

then applies a softeq factor to each symmetric pair of block vertices.

To validate our statics model, we built physical prototypes of some structures

generated by our system (Figure 4.1). In the program used to generate these examples,

we restricted block shapes to be planar extrusions to allow us to easily cut them out

of wood stock. All blocks shown were cut from 38mm (11
2 in) poplar, whose density

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 56

Figure 4.11: Structures generated with an additional constraint encouraging bilateral
symmetry.

Figure 4.12: Testing a block stack generated under the constraint that it be stable at
up to ±10� tilts of the ground plane.

and coe�cient of friction we estimated as 425 kg/m3 and 0.3, respectively [5].

To increase the stability of a structure, we can enforce that it be stable under

some class of perturbations, rather than at a single rest configuration. Figure 4.12

shows a block stack generated under the constraint that it stand under as much as

±10� tilts of its ground plane. To enforce this condition, we write a program that

generates a random stack as before, then rotates the entire scene ±10� about one

axis, applying a stability constraint at each rotation.

The generated structures shown thus far are not necessarily stable at every step

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 57

Figure 4.13: Block stacks generated under the additional constraint that they be
stable at every intermediate construction step.

of their construction, which can complicate the process of physically building them.

We can mitigate this problem by applying a stability factor at intermediate phases

of structure generation, as opposed to just one at the end. Figure 4.13 shows three

example stacks generated this way. To generate more exciting structures under this

constraint, one could write programs that use temporary sca↵olding to hold the struc-

ture up, treat the presence and configuration of that sca↵olding as random variables,

and infer plausible build processes. This is a promising avenue for future work.

4.5 Chapter Summary

This chapter introduced Hamiltonian Monte Carlo to probabilistic computational

design. We implemented HMC in a high-performance probabilistic programming

language, and we evaluated it on two example applications, showing that it can

e�ciently generate suggestions in highly-constrained scenarios.

HMC relies on the gradient r log ⇡(x) to make proposals, so the probability ⇡

must be continuous and di↵erentiable everywhere. This requirement limits the fac-

tors that can be used to define ⇡. For example, min and max are useful for defining

penalty functions but cannot be used directly, though they can often be approximated

with relaxed versions. Graphics applications often feature other complex, highly-

discontinuous functions, such as rendering and collision. These functions might also

be similarly relaxed through smooth interpretation, a technique for automatically

CHAPTER 4. EXPLORING TIGHTLY-CONSTRAINED DESIGN SPACES 58

deriving a smooth, di↵erentiable approximation of programs [10].

Complex hard constraints also remain challenging; su�ciently tight soft con-

straints may be acceptable, as in the case of our stacking equilibrium examples, but

this will not always be the case. An extension to HMC that explicitly adheres to

a manifold may provide a good solution [8]. Complex constraints on discrete vari-

ables are also di�cult—integrating SAT solvers into MCMC methods has been shown

provide some traction here [125].

Chapter 5

Handling Branching Structure

with SOSMC

Forward Sampling SOSMC Sampling Forward Sampling SOSMC Sampling

Figure 5.1: Controlling the output of highly-variable procedural modeling programs
using our Stochastically-Ordered Sequential Monte Carlo algorithm. Here, the con-
trols encourage volumetric similarity to a target shape (shown in black).

The inference algorithms described in the previous two chapters both belong to

the family of Markov Chain Monte Carlo (MCMC) methods. But other Bayesian pos-

terior sampling algorithms are available: another popular choice is Sequential Monte

Carlo (SMC). SMC uses a set of samples, or particles, to represent a distribution

that changes over time as new evidence is observed. As the distribution changes,

SMC shifts more particles (and thus more of its computational budget) to higher-

probability regions of the state space. For probabilistic models that fit this pattern of

59

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 60

‘evidence arriving over time,’ such as modeling the location of a mobile robot, SMC

is often the method of choice: the incremental evidence it receives provides feedback

early and often, allowing it to converge quickly [21]. In contrast, MCMC receives

feedback only after running through the entire model.

This ‘incremental evidence’ pattern could be beneficial for controlling procedural

models. Many popular classes of procedural models in graphics, such as tree mod-

els, feature deep branching structures. Controlling such a model to, say, produce a

particular shape thus requires careful coordination between long chains of random

variables.

Can we use Sequential Monte Carlo to control procedural models? Procedural

models are typically hierarchical and recursive—we need to cast them instead as

sequential processes, where control can be imposed incrementally over time. Fortu-

nately, representing procedural models with probabilistic programs makes this easy,

since programs have sequential semantics: they execute in a series of discrete time

steps. Control can be imposed incrementally by evaluating a scoring function on the

incomplete model at each step, providing an estimate as to how well the algorithm is

doing thus far.

However, there are multiple ways to sequentialize a structured procedural mod-

eling program—and as we will show, SMC does not always perform well using the

depth-first ordering given by most modern, stack-based programming languages. It is

typically not clear a priori what the best ordering(s) will be for a given program and

control scoring function: in the absence of any special knowledge, a good strategy

might be to execute the program in random order.

Following this insight, we introduce a new variant of SMC, Stochastically-Ordered

Sequential Monte Carlo (SOSMC), in which each particle executes the program in

an independent, random order. We also prove that this algorithm is a correct,

asymptotically-unbiased sampler for the posterior distribution defined by the con-

strained program. To implement SOSMC for procedural models expressed as general-

purpose probabilistic programs, we also introduce a new programming primitive, the

stochastic future, whose use requires minimal modification to the original program.

We then show that SOSMC can handle a range of procedural models and controls

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 61

explored in the literature, and that it generates better-scoring samples under tight

time budgets than either normal SMC or Metropolis-Hastings (MH). For small com-

putational budgets, SOSMC’s outputs often score nearly twice as high as those of

normal SMC or MH.

We give a high-level overview of our main insights and approach in Section 5.2,

then we formally describe the SOSMC algorithm in Section 5.3 and our prototype im-

plementation in Section 5.4. In Section 5.5, we evaluate the algorithm’s performance

on a variety of procedural models with constraints and compare to other sampling

methods.

5.1 Related Work

Controlled Procedural Modeling As covered in Section 2.1, several existing

projects aim to control procedural models through probabilistic inference. One uses

reversible-jump MCMC to direct the output of stochastic context free grammars [112].

Another uses similar MCMC techniques to guide L-system-based trees toward a target

polygonal model [106]. Others develop new trans-dimensional MCMC methods to

solve complex layout problems [129] or use MCMC to make parameterized models of

urban environments satisfy desired criteria [114]. These all use MCMC as their core

control algorithm; in contrast, we focus on Sequential Monte Carlo for its potential

performance benefits.

There have also been several non-probabilistic approaches to directing procedural

models. Environmentally-sensitive L-systems and Open L-systems allow communi-

cation between a procedural model and its environment [86, 75]. Another approach

decomposes the modeling domain into geometric guides to which the procedural model

should adhere [4]. These approaches a↵ect the model as it evolves. Our approach can

be thought of as generalizing this type of control using probabilistic inference.

Sequential Monte Carlo Sequential Monte Carlo has a long history, beginning

with the simulation of self-avoiding polymer chains [37, 96]. A critical point came with

the introduction of a resampling step, allowing the reallocation of particles according

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 62

to their probability [31, 108]. The resulting algorithm, called the bootstrap filter,

was designed for linear time-series processes. We extend it for structured processes

by linearizing the process and treating the linearization order as additional set of

random variables. It can be shown that, as the number of SMC particles approaches

infinity, their distribution approaches the target posterior density [100, 31]. We prove

that this distribution is invariant under linearization order, thus re-ordering does not

change program semantics.

SMC in Computer Graphics Sequential Monte Carlo has found applications

in computer graphics already. It has been applied to Monte Carlo integration for

physically-based rendering, in particular rendering with participating media [26, 80].

It has also been used to control virtual characters responding to dynamic environ-

ments [36]. These applications have straightforward sequential interpretations: prop-

agation of light along a path through space, or the motion of a character over time.

In contrast, we focus on structured procedural models, which have many possible

sequentializations.

SMC belongs to the family of population-based methods, which evolve a population

of samples toward some desired goal. This general approach has also been used for

3D shape design [124]. This system maintains a complete set of shapes at all times,

whereas ours works with incomplete shapes defined by partial program executions.

SMC for Probabilistic Programs Sequential Monte Carlo has also previously

been applied to probabilistic programs. Anglican implements several SMC methods,

including sophisticated SMC/MCMC hybrids [121]. Probabilistic C uses OS mul-

tiprocessing primitives to construct e�cient, parallel implementations of these same

algorithms [79]. It is also possible to implement these algorithms using a continuation-

passing-style compiler [30]. These systems are restricted to handling a fixed number

of time steps—the common case in statistical inference, where each step corresponds

to a data point. In contrast, we are concerned with scenarios that have a variable

number of steps, as this situation arises often with structured, recursive procedural

models.

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 63

5.2 Approach

// Generating random
// 2D ’spaceships’
function genShip() {

do {
genBodySeg()
maybeGenWing()
done = flip(�.5)

} while (!done)
}
genShip()

(a)

n = 1!

…
!

n = 2! Final!

…!

…!

Target!

…
!

…
!

Sample! Resample! …

Fixed!

Random!

(b)

Figure 5.2: (a) A program that generates simple random spaceships. Orange-
highlighted function calls can be executed in any order with respect to one another.
(b) SMC resampling favors higher-scoring states, so particles that fill in the body
first will dominate. Under fixed ordering, particles skip wing generation altogether,
whereas random ordering can defer wing generation until after body generation.

In this chapter, we focus on programs that generate models through hierarchical,

recursive accumulation of geometric primitives into an implicit global state. To il-

lustrate our approach, we use an example program that generates random simplified

spaceships out of blocks (Figure 5.2a). The program generates the ship body by

placing a random number of contiguous blocks and may randomly grow wings, also

made of a random number of blocks, from any body segment. For brevity, we do not

show pseudocode for the wing-creation function maybeGenWing—its structure is similar

to that of genShip. We will use SMC to sample from this program under a scoring

function that encourages similarity to a target shape.

SMC runs N copies of the program, called particles, (conceptually) in parallel.

Particles execute until they arrive at a barrier synchronization point—this is the

sampling phase. In our procedural modeling programs, barriers occur when programs

generate a new geometric primitive. SMC computes the score of each particle and

then randomly samplesN particles in proportion to their scores: high-scoring particles

are sampled more often, and low-scoring ones are sampled less often, or not at all.

This is the resampling phase, and these new particles become the input for the next

sampling phase. Resampling ensures that the algorithm concentrates particles (and

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 64

Algorithm 1 SMC for procedural modeling programs

procedure SMC(program, scorefn, N)
P N new particles (instances of program)
W N real-valued weights
while some particle p 2 P has not terminated do

// Sample
for all unterminated particles p 2 P do

Run p until it generates a new geometric primitive

// Score
for i = 1 to N do

W (i) scorefn(P (i))

normalize(W)
// Resample
P weightedsampleN(P , W , N)

thus its computational budget) in high-scoring regions of the state space. Essentially,

SMC operates like a stochastic version of beam search [6]. Algorithm 1 shows high-

level pseudocode for running SMC on procedural modeling programs.

The first column of Figure 5.2b shows a hypothetical set of particles that have

passed the first barrier—that is, they have placed one primitive, which in this case

must be a body segment. At the next barrier (second column), some particles will

randomly start growing wings from the first body segment, while others will instead

proceed with the next body segment. Because body segments are larger than wing

segments, placing a body segment brings the model closer to the target more quickly

than placing a wing segment. Thus, the resampling phase will favor particles that

place body segments over those that place wing segments—body-segment particles

will dominate the next round (third column).

Consider the calls to genShip and maybeGenWing, highlighted in orange in Figure 5.2a.

These calls generate independent components of the model and could in principle

interleave their execution in any order with respect to one another. However, most

programming languages will execute them in a fixed, depth-first order, which causes

a problem in this example: all of the second-round particles decided not to generate

wings on the first body segment, and SMC has no mechanism to reverse that decision.

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 65

The best possible result from this point on are ships with bodies that match the target,

but no wings (Figure 5.2b, red box). We could try to eliminate this problem by

only resampling after body segment generation, but this would leave wing generation

without any guidance from resampling, requiring it to match the target by pure

chance. And even if this fix worked, it would be specific to this program—we seek

general-purpose solutions that work for any procedural model.

Now suppose each particle executes the calls to genShip and maybeGenWing in a ran-

dom order. This means that some second-round particles likely deferred execution of

maybeGenWing and instead continued executing genShip—they have yet to decide if they

will generate wings on the first body segment. By deferring this decision, SMC can

generate results that have both body and wings that match the target (Figure 5.2b,

green box). Sequential Monte Carlo is a form of importance sampling, and here

execution order randomization helps it sample the most important objects first.

These execution-order-sensitive situations do not occur in the linear time-series

models for which SMC was developed, but they frequently arise in structured proce-

dural modeling. It is clear that some orderings are better than others, but it is not

always clear which orderings those are. Even if known, it is cumbersome to explicitly

express specific orderings in the program text. And finally, the best orderings depend

upon the score function being used—it is unreasonable to expect the programmer to

restructure her code for each new control imposed on a model.

This is the motivation behind Stochastically-Ordered Sequential Monte Carlo:

since we cannot know what execution orderings are good a priori, we randomize

them, in the hope that randomization will discover good orderings on average. Af-

ter formally describing SOSMC and its implementation in Sections 5.3 and 5.4, we

show that randomization does lead to reliably better results, both qualitatively and

quantitatively (Section 5.5).

5.3 SOSMC

Having outlined our approach intuitively, we now formally define the probability

distribution sampled by the SOSMC algorithm. SMC algorithms are specified as

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 66

sampling from a sequence of distributions p1, p2, . . . ; the final distribution p
N

is

often the one of interest. These distributions are usually defined over a growing set

of variables x, e.g. p1(x1), p2(x1, x2), and so on. These variables typically represent

states which evolve over time.

Defining such a sequence of distributions for SOSMC is more complicated, as

general procedural modeling programs follow a structured execution that does not

conform to a single, linear time-series interpretation. Thus, we augment our state

space of variables x to include execution ordering choice variables o in addition to the

program’s own random choice variables r.

We define the intermediate distribution p
n

to be the distribution over all execution

traces which generate n or fewer geometric primitives. Let x
n

be the sequence of

all random choices made up to primitive n, where x0 is empty. As subsets of this

sequence, let r
n

denote the procedural model’s random choices, and let o
n

denote

the ordering choices. We will sometimes refer to r as a trace through the procedural

model program. The intermediate distribution p
n

can then be defined recursively as

p
n

(x
n

) = p
n�1(xn�1) · p(xn

|x
n�1)

= p
n�1(xn�1) ·

|xn\xn�1|Y

i=1

p(x
n,i

|x
n,1:(i�1),xn�1)

where x
n,j:k are the jth to kth random variables generated up to primitive n. The

form of the per-variable conditional probability p(x
n,i

|x
n,1:(i�1),xn�1) depends on the

type of the variable x
n,i

. If it is one of the procedural model’s random choices, then

the conditional probability is a function of the variable’s parents in the program’s

dataflow graph and depends on the primitive distribution from which the variable is

drawn (e.g. uniform, Gaussian):

p
r

(x
n,i

|x
n,1:(i�1),xn�1) = p(x

n,i

|par(x
n,i

))

If x
n,i

is an ordering choice, then the conditional probability is defined by an or-

dering policy ⇡. This policy determines how to select the next subcomputation to

continue when the currently-executing subcomputation finishes, or when a particle

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 67

synchronization barrier is reached (i.e. when a geometric primitive is generated).

We are concerned with two ordering policies. The first is the deterministic policy:

⇡
D

(x
n,i

|x
n,1:(i�1),xn�1) =

8
<

:
1 if x

n,i

= N(x
n,1:(i�1),xn�1)

0 otherwise

where N(x
n,1:(i�1),xn�1) is the number of subcomputations that could be continued

at this point. This policy chooses the last option, equivalent to popping the top of a

stack, with 100% probability. This behavior corresponds to running a program with

depth-first execution ordering—normal SMC, in other words.

The second ordering policy of interest is the stochastic policy:

⇡
S

(x
n,i

|x
n,1:(i�1),xn�1) =

1

N(x
n,1:(i�1),xn�1)

which uniformly at random chooses a subcomputation to continue. This behavior

corresponds to running a program with randomized execution order—the full SOSMC

algorithm.

Thus far, we have only defined the prior distribution specified by the program

itself. We already know how to sample from this distribution: run the program

forward. Sampling only becomes challenging when we include a likelihood term that

shapes the distribution. Our likelihood term is given by a user-provided score function

s(·). Critically, this score function must be defined for partial execution traces r
n

,

not just complete execution traces. The total, unnormalized posterior density at step

n is

F
n

(x
n

) = s(r
n

) · p
n

(x
n

)

The full, normalized probability distribution from which SOSMC samples at step n

is

P ⇡

n

(x
n

) =
F
n

(x
n

)

Z⇡

n

(5.1)

where Z⇡

n

is the partition function which normalizes the distribution and depends on

the ordering policy ⇡. The final distribution in this sequence is P ⇡

N

: the distribution

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 68

over complete runs of the program. As the number of SMC particles approaches

infinity, their distribution approaches the target posterior density [100, 31]. Thus,

SOSMC is an asymptotically-unbiased sampler for P ⇡

N

.

In Appendix C, we show that the marginal distribution on generated models is

the same under the stochastic ordering policy ⇡
S

as under the deterministic policy

⇡
D

. In other words, if we consider only the final state and not the order in which

it was generated, then SOSMC draws samples from the desired distribution. The

proof proceeds by marginalizing out the ordering choices o
N

and showing that the

two policies generate equivalent sets of complete traces r
N

. Finally, the N subscript

indicates that our programs always terminate after a finite number of steps. The

proof in Appendix C operates in this setting, but it also discusses programs that

almost always terminate (i.e. terminate with probability one).

5.4 Implementation Using Stochastic Futures

To implement execution order randomization, we need a mechanism for interleaving

the execution of di↵erent function calls with respect to one another. This requirement

suggests looking at concurrent programming primitives. We settled on futures, a

lightweight concurrency primitive that operates at the function call level [35]. Futures

were originally designed for fine-grained parallelism, but we use them for a di↵erent

interpretation of concurrency: sequential, interleaved programming. When called,

a future may or may not begin executing, but it must finish executing when the

program requests its return value. One common programming interface for futures

allows for their creation by wrapping a function call with future.create and requesting

their values by calling a force function. The interface to stochastic futures includes

two more features:

• future.switch(): Switch control to and resume executing some other (random)

active future. Our SOSMC implementation calls this function after every re-

sampling step, allowing resampled particles to take di↵erent paths through the

program as they advance.

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 69

• future.finishall(): Finish all active futures. Our programs generate geometry

by appending to an implicit global model state, so most futures do not have a

return value (e.g. the highlighted lines in Figure 5.2a). Our SOSMC implemen-

tation calls this function at the end of every program to force all such futures

to finish.

To achieve the best performance with SOSMC, a procedural modeling program

should use a stochastic future wherever it makes a branching decision predicated on

a random choice. In our implementation, we insert these futures manually, since

these situations are easy to identify in practice and typically occur near natural

function call boundaries (e.g. maybeGenWing in Figure 5.2a). It should also be possible to

automatically transform programs into this form using source-to-source compilation

guided by simple static analysis (i.e. detecting when a random value flows into a

conditional expression or statement).

Note that since function calls may execute in an arbitrary order, the program

must be thread safe: any accesses to shared data can be reordered without changing

program behavior. In our implementation, the only shared data structure is the global

model state, and adding geometry to this state is an associative operation.

Implementing stochastic futures requires the ability to arbitrarily switch between

di↵erent in-progress computations. Higher-level concurrency primitives are often im-

plemented atop lower-level ones, such as threads. For stochastic futures, coroutines

are a natural choice of implementation primitive. Coroutines are a generalization

of subroutines that can suspend their execution, yield control to another coroutine,

and then resume later. They were designed for sequential concurrency in the form

of cooperative multitasking [17]. Algorithm 2 outlines an implementation of switch,

force, and finishall in terms of asymmetric coroutines. Calling finishall initiates a

loop that drives the random execution of futures, while switch and force determine

when control returns to this loop.

We implement a prototype of SOSMC in Lua, with performance-critical compo-

nents such as mesh voxelization and intersection implemented as high-performance

extensions in Terra [18]. Following Algorithm 2, we implement stochastic futures

using Lua’s native coroutines. To perform weighted particle resampling, we use the

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 70

Algorithm 2 Implementing stochastic futures with coroutines

q { } // A global queue of active futures
curr nil // The currently-running future

procedure switch()
coyield()

procedure force(future)
// Suspend the forcing future until this future is finished
q q \ {curr}
future.waiters future.waiters [{curr}
return coyield()

procedure finishall()
// Randomly continue futures until all are finished
while ¬ empty(q) do

f uniformdraw(q)
continue(f)

procedure continue(future)
curr future
retvals coresume(future.co, future.args)
future.args { }
if cofinished(future.co) then

// Reactivate any suspended futures that were waiting
// for this one to finish
for all w 2 future.waiters do

w.args retvals
q q [{w}

q q \ {future}

well-known systematic resampling scheme for its simplicity and practical variance re-

duction properties; we also found residual resampling to work well [20]. The source

code for our implementation can be found here: https://github.com/dritchie/

procmod. For the comparisons to Metropolis Hastings in Section 5.5, we also imple-

ment Lightweight MH in Lua [119].

Both our prototype SMC and MH implementations must, on each iteration, re-

play the program trace from its beginning, though generated geometry and derived

quantities are cached and not recomputed. This gives them both a quadratic time

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 71

complexity in the depth of the program. In Chapter 3, we demonstrated how to elim-

inate this overhead for MH. SMC for probabilistic programs can also be implemented

without this overhead. Rather than replaying traces, particles could suspend and

then resume at each sample/resample step. Resampling then requires copying sus-

pended particles, which can be implemented e�ciently with a construct like POSIX

fork [79]. In a purely functional language, suspended particles can also be represented

with continuations [30].

Finally, while our prototype implementation is serial, SMC is very straightforward

to parallelize, which further enhances its performance potential. Particles can be

evolved independently in parallel in the sampling phase and then gathered for the

resampling phase using barrier synchronization.

5.5 Evaluation

We now demonstrate the ability of SOSMC to quickly and reliably generate high-

quality procedural modeling samples. As test cases, we have chosen a variety of

programs and controls that span a range of useful features, many of which have

been explored previously in the literature [112]. We show that SOSMC can draw

useful samples from these programs and controls, and that it generates higher-scoring

samples than SMC or MH given small computational budgets. In all examples, we

impose an additional score function which prevents geometry self-intersections by

assigning a zero score to such configurations.

5.5.1 Volume Matching

It can be useful to control the overall 3D shape of a model via a rough geometric

proxy. We implement this control volumetrically. If V
target

is a target binary voxel

grid defined over domain D, and V
r

is the voxelization of the model described by

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 72

Forward Sampling SOSMC Sampling

Figure 5.3: SOSMC sampling from a random building complex model with volume
matching applied.

execution trace r onto D, then the volume matching score function s
vmatch

is

s
vmatch

(r) = N (sim(V
r

, V
target

), 1, �) · N ("
out

(r), 0, �)

sim(V1, V2) =
1

|D|
X

x2D

1{V1(x) = V2(x)}

where sim(V1, V2) returns a [0,1] similarity score for two voxel grids. "
out

(r) returns

the maximum amount to which the model defined by r extends outside D along any

dimension. The first normal term in s
vmatch

(r) encourages similarity to the target

volume. The second term penalizes growing beyond D, where the target volume is

not defined. We use a 2% error tolerance in all of our experiments (� = 0.02) unless

otherwise specified.

Figure 5.1 shows some examples of spaceships and trees sampled according to this

score function using SOSMC. Figure 5.3 applies the same score function to encourage

a building complex to take on a crescent-like shape.

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 73

Figure 5.4: Using the object avoidance scoring function to make gnarly trees grow
around obstacles.

5.5.2 Object Avoidance

Volume matching allows an artist to specify what regions of space a model should

occupy; it can also be valuable to specify the space a model should not occupy. For

this control, the user provides a set of objects with which the model should avoid

contact. We rasterize these objects onto a binary voxel grid V
avoid

. The object

avoidance score function s
avoid

is then

s
avoid

(r) =
Y

x2D

1{V
r

(x) " V
avoid

(x)}

where " is logical NAND. This function imposes a hard constraint: it returns 0 if V
r

and V
avoid

have any mutually filled cells and 1 otherwise.

Figure 5.4 shows two examples of using object avoidance to generate trees that

avoid obstacles. On the left, the tree avoids a wall with three protruding ledges; on

the right, it grows through and around the SIGGRAPH logo. These examples also

use a weaker version of the volume matching score function (� = 0.05) to encourage

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 74

the trees to grow to a tall, full shape.

5.5.3 Image Matching

It is also useful to specify projective properties of a model, such as how it looks from

a particular viewpoint or when lit from a particular angle. We implement this type of

control through image-based comparisons. If I
target

is a target binary image defined

over domain D, and I
r

is a rendering of the model described by trace r onto D, then

the image matching score function s
imatch

is

s
imatch

(r) = N (sim(I
r

, I
target

), 1, �)

sim(I1, I2) =

P
x2D W (x) · 1{I1(x) = I2(x)}P

x2D W (x)

where W is a ‘weight image’ defined over D. The weight image allows users to draw

strokes over parts of the image domain where strict matching is more or less important.

For the results shown in this chapter, W is uniform unless explicitly shown. As with

volume matching, � is 0.02 unless otherwise specified.

Figure 5.5 shows a use of the image matching scoring function to enforce a target

silhouette for a building complex when viewed from a particular angle. Note that

the generated model is still free to exhibit random structure when viewed from other

angles.

In Figure 5.6, we use image matching to control the profile of a spaceship. The

generated models bear strong similarity to the target image when viewed from the

front but are otherwise unconstrained, revealing diverse structure when viewed from

other angles.

Figure 5.7 shows another use of image matching: controlling the shadows cast by

toy blocks strewn about a floor. Here, we decrease the score error tolerance by an

order of magnitude (� = 0.002), use a weight image that places 10 times more weight

on the outline of the target face image, and increase the particle count (N = 1500).

These changes help SOSMC to match the fine details along the shadow silhouette

edge. Again, the blocks in this example appear randomly arranged when viewed from

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 75

Front View Top View

Figure 5.5: The image matching scoring function is used to control the appearance of
a building complex from a particular viewpoint. (Left): The model as viewed from
the target viewpoint. (Right): The model viewed from above.

other angles.

In Figure 5.8, we use image matching to shape the shadow cast by a network of

rectangular pipes. We lower the score error tolerance to � = 0.0005 to encourage

SOSMC to fill in the shadow as completely as possible while avoiding extrusions

beyond the desired silhouette. For our implementation, this is more practical than

increasing particle count due to the model’s extreme depth.

5.5.4 Quantitative Evaluation

Table 5.1 shows timing statistics for the examples presented in this section. The

second-to-last column shows the number of particles used by SOSMC; we find that

300 particles is su�cient to generate high-quality results in most cases. The last

column reports the time taken to generate the example; for figures that show multiple

output models, the time reported is the average time to generate them. All timing

data was collected on an Intel Core i7-3840QM machine with 16GB RAM running

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 76

Target

Front View

Top View

Figure 5.6: Using image matching to control the appearance of a spaceship’s front
profile. The SOSMC-sampled results closely match the target when viewed head on
but exhibit a variety of structures when viewed from other angles.

Target/Weight Top View Oblique View

Figure 5.7: Using the image matching scoring function to control the shape of
cast shadows in a scene with toy blocks scattered on a floor. Face silhou-
ette image derived from a template created by Milliande Printables (http://www.
milliande-printables.com/face-silhouette-woman-stencil.html).

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 77

Figure 5.8: Using image matching to control the shadows cast by a network of pipes.

OSX 10.8.5. Times for simpler models, such as the spaceship, are already fast enough

(a few seconds) to be used in interactive settings. As noted in Section 5.4, generation

times for more complex models can be reduced by eliminating trace replay overhead

or through parallelization.

We can also compare how well SOSMC, SMC, and MH generate high-scoring

samples under di↵erent computational budgets. We are particularly interested in

their behavior in low-budget scenarios. As test cases, we use the spaceship, building

complex, and tree programs under volume constraints. These programs all exhibit

recursive structure, but of a di↵erent nature: the spaceship program spawns recursive

paths (wings, etc.) from a single recursive spine (the body), whereas the building com-

plex and tree programs generate components in a multiply-branching, tree-recursive

style.

We find that MH requires additional tuning to achieve peak performance. Specif-

ically, it generates better results with a score function tempered down to a 0.5% error

tolerance (� = 0.005). We also experimented with parallel tempering but found it

not to perform better than normal MH when run for the same amount of time on

sequential hardware. If run on parallel hardware—as in e.g. Talton et al. [112]—it

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 78

Program Control Figure N Time (s)

Spaceship s
vmatch

5.1 300 3.09

Gnarly Trees s
vmatch

5.1 300 598.34

Building Complex s
vmatch

5.3 300 24.14

Gnarly Trees s
avoid

· s
vmatch

5.4 100 164.25

Building Complex s
imatch

5.5 300 38.44

Spaceship s
imatch

5.6 300 7.33

Toy Blocks s
imatch

5.7 1500 135.91

Pipes s
imatch

5.8 100 675.81

Table 5.1: Timing data for all procedural modeling examples shown in this chapter.
N is the number of particles used by SOSMC.

could perform better, but for fair comparison, we would also have to run SMC in par-

allel. SMC could then process more particles in the same amount of time, improving

its performance as well.

In our comparison experiment, we run SMC and SOSMC for particle counts rang-

ing from 10 to 1000. At each particle count, we also run MH, giving it as much time

as an average SOSMC run takes to complete at that particle count. We run each

algorithm 10 times, take the highest score for each run, and record the mean and

variance of those high scores. Figure 5.9 shows the results of this experiment. On

the left, we plot mean highest score against increasing computational budget; line

thickness is proportional to variance in highest score. Our implementation computes

all quantities in log-probability space, so the scores shown are log scores.

For the spaceship example, SOSMC starts with higher scores than either SMC or

MH, which both require a significant amount of computation to reach the same score

level. SOSMC also achieves consistently low variance in scores (evidenced by the

thin orange lines in Figure 5.9, left), suggesting that it reliably generates high-scoring

results on every run. SMC su↵ers from the order-sensitivity problems discussed in

Section 5.2 but appears to overcome them when given enough particles. MH fares

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 79

0 100 200 300 400 500 600 700 800 900 1000
Num Particles

-50

-40

-30

-20

Sc
or

e

MH
SMC
SOSMC

SOSMC! SMC! MH!

Score: -20.59!
Time: 0.93s!

Score: -38.73!
Time: 0.38s!

Score: -34.07!
Time: 1.1s!

N = 100

Target!

(a)

100 200 300 400 500 600 700 800 900 1000
Num Particles

-30

-25

-20

-15

-10

-5

Sc
or

e

MH
SMC
SOSMC

SOSMC! SMC! MH!

Score: -10.38!
Time: 8.32s!

Score: -17.95!
Time: 3.42s!

Score: -18.66!
Time: 7.52s!

Target!

N = 100

(b)

100 200 300 400 500 600 700 800 900 1000
Num Particles

-25

-20

-15

-10

-5

Sc
or

e

MH
SMC
SOSMC

SOSMC! SMC! MH!

Score: -10.87!
Time: 8.15s!

Score: -16.74!
Time: 8.47s!

Score: -15.91!
Time: 10.00s!

N = 100

Target!

(c)

Figure 5.9: A comparison of SOSMC, SMC, and MH in generating high-scoring out-
puts with limited computation time. (Left) Maximum score achieved by each method,
averaged over 10 runs, as computational budget increases. Line thickness is propor-
tional to variance in high scores over those runs. SMC and SOSMC use the same
number of particles; MH runs for as long as SOSMC takes to run on average. (Right)
Representative samples generated by each method given a computational budget of
100 particles (or equivalent average running time, for MH). SOSMC consistently out-
performs both SMC and MH in reliably generating high-quality samples at small
budgets.

slightly better than SMC in terms of score, and its outputs are also qualitatively more

diverse, featuring more interesting variations.

In the building complex example, SMC again su↵ers from order sensitivity. While

it can generate good results, it often fails to generate both sides of the target crescent

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 80

curve (Figure 5.9b, right), leading to high variance in scores (Figure 5.9b, left). MH

fares better than SMC and does eventually match SOSMC’s scores at high budgets.

At low budgets, however, SOSMC generates good volume matches, whereas MH does

not have enough time to reliably do so (Figure 5.9b, right). MH requires twice as

much computation as SOSMC to consistently score above -10, the threshold above

which results appear consistently ‘good’ for this example.

For the tree example, SMC’s performance is close to SOSMC’s, since the target

shape has linear structure with branching only at the end. However, order-sensitivity

is still an issue, as SMC sometimes generates models that use a large branch where

continuing the trunk would be more natural (Figure 5.9c, right). MH also performs

well overall on this example, but there is a persistent gap between its performance and

that of SOSMC. MH’s proposals—which randomly re-generate subtrees—can fail to

discover the long structure of the target shape, especially at low budgets (Figure 5.9c,

right).

5.6 Chapter Summary

This chapter introduced SMC to the task of controlled procedural modeling. We de-

veloped the SOSMC algorithm and the stochastic future to handle the multiple possi-

ble sequentializations of a procedural modeling program. We demonstrated SOSMC’s

ability to generate high-quality results for a variety of programs and controls, and we

showed that it reliably generates better results under small computational budgets

than both depth-first SMC and MH.

5.6.1 Limitations

SOSMC will not always succeed for all possible programs and score functions. SMC

is known to be susceptible to ‘garden paths,’ or execution traces that look promising

for much of their runtime only to become undesirable later on [58]. In settings where

such paths exist, SOSMC could conceivably perform worse than depth-first SMC,

as it may randomly discover garden paths that depth-first SMC cannot follow. For

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 81

such problems, the ability to revise past decisions is critical, so MCMC or hybrid

SMC/MCMC approaches work better [1].

SMC also needs random choices to be interleaved with evidence (i.e. geometry

generation) to work well. If too many random choices are made up-front, the program

‘overcommits’ itself and proceeds like simple forward sampling. Fortunately, most

hierarchical, recursive procedural models can be written in interleaved style. Simple

data flow analysis could be used to push random choices as close as possible to their

dependent geometry, if the program is not already written in this way.

In addition, SMC can su↵er from the ‘sample impoverishment’ problem: repeated

resampling tends to kill o↵ all but one or a few particle execution histories, resulting

in a final set of particles whose early execution histories are identical. For procedural

modeling programs, this behavior manifests in many near-duplicates in the final set

of sampled output models. Ideally, SMC would deliver as many unique samples as

it has particles, and there exist a variety of impoverishment-fighting techniques that

could help realize this goal, though at the cost of more computation time [28, 63].

MCMC algorithms su↵er from a similar problem in the form of ‘mode lock,’ wherein

the MCMC chain becomes stuck in a small, localized region of the state space.

5.6.2 Scalability

The examples presented in this chapter are relatively simple, using from dozens up

to a few hundred primitives, but we believe that SOSMC should scale well to mod-

els of increasing complexity. In terms of depth complexity (i.e. how many primi-

tives the program generates), an implementation that avoids trace replay, such as a

continuation-based implementation, should be able to maintain nearly-constant work

per SMC timestep. Some scoring functions, such as intersection testing, could still

become more expensive as depth complexity increases, however.

In terms of breadth complexity (i.e. the program’s approximate branching factor),

a high branching factor results in more possible execution orderings, which could

require more particles to explore. The results presented in this chapter suggest that

SOSMC can work well up to branching factor 4 (the Building Complex program) with

CHAPTER 5. HANDLING BRANCHING STRUCTURE WITH SOSMC 82

a reasonable number of particles; future work could further explore this question.

Chapter 6

Learning to Sample using Neural

Guides

Guided
(N = 10
particles)

Unguided
(Equal N)

Unguided
(Equal Time)

Figure 6.1: (Top Row) Used as an importance sampler for Sequential Monte Carlo
with N = 10 particles, our neurally-guided procedural models generate shape-
matching results for each of the above letters in about a second. (Middle Row) The
näıve, unguided procedural model does not converge to recognizable results using the
same number of particles (N = 10). (Bottom Row) The unguided model does better,
but still does not reliably converge, when given the same amount of computation time
as the guided model (⇡ 1 sec).

83

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 84

Even with the advances described in the previous three chapters, generating high-

quality results from constrained procedural modeling programs still requires consid-

erable computation time: thousands of iterations for MH, or hundreds of particles for

SMC. This limits their usability for interactive applications.

Fundamentally, sampling from constrained procedural models is challenging be-

cause the constraints implicitly define complex (often non-local) dependencies not

present in the unconstrained procedural model (i.e. the prior). Can we instead make

these dependencies explicit by encoding them in the models’ generative logic? Such an

explicit model could simply be run forward to generate constraint-satisfying results.

In this chapter, we propose a method for automatically learning an approximation

to such a perfect explicit model. Our method leverages advances in deep learning:

it augments the procedural model with neural networks that control how the model

makes random choices, based on what partial output the model has generated thus

far. We call such a model a neurally-guided procedural model. The neural networks are

expressive enough to capture many implicit dependencies induced by the constraints.

Building on our work from the previous chapter, we train neurally-guided proce-

dural models using constraint-satisfying example outputs generated via SMC. Once

trained, these models can be used as intelligent SMC important samplers. Our ap-

proach thus enables ‘bootstrapping’ samplers which train on their own outputs and

become more e�cient over time. Or, the system can invest time up-front generating

and training on many examples, e↵ectively ‘pre-compiling’ an e�cient sampler.

We demonstrate our method through experiments with L-system-like procedural

models with image-based soft constraints (Figure 6.1). For a given constraint sat-

isfaction score threshold, our neurally-guided procedural model can generate results

which reliably achieve that threshold using 10-20x fewer particles and up to 10x less

compute time than an unguided procedural model.

We give a high-level overview of our approach in Section 6.2 and then present

the mathematical foundations of our method in Section 6.3. In Section 6.4, we de-

scribe how to implement neurally-guided procedural models with image-matching

constraints. Finally, we evaluate the performance of those models in Section 6.5.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 85

6.1 Related Work

Probabilistic Inference for Procedural Modeling As surveyed in Section 2.1

and discussed in Section 5.1, many research projects have used Bayesian probabilistic

inference to control procedural models: constraining the shape of a 3D object [112, 91],

creating functionally-plausible and aesthetically-pleasing furniture arrangements [69,

129], coloring in patterns [62], and dressing virtual characters [131] are a few recent

applications. Our work aims to make such systems more e�cient: neurally-guided

procedural models can capture many of the dependencies introduced by constraint

likelihood functions, so samplers need fewer samples to find good results.

In recent work similar in spirit to our own, Dang and colleagues built a system

which modifies a procedural grammar so that its output distribution reflects user

preference scores given to example outputs [16]. Like us, they seek a model whose

generative logic captures dependencies induced by a likelihood function (in their case,

a Gaussian process regression over user-provided examples). Their method works

by splitting non-terminal symbols in the original grammar, giving it more degrees

of freedom to capture more dependencies. This approach works well for discrete

dependencies, such as ensuring all floors of a building have the same architectural

style. In contrast, our method captures dependencies using neural networks, making

it better suited for complex, continuous constraint functions, such as shape-fitting.

Guided Procedural Modeling The non-probabilistic approaches to controlling

procedural models mentioned in Section 5.1 are again relevant in this chapter. The

seminal work on open/environmentally-sensitive L-systems developed a formalism by

which L-systems could query their spatial position and orientation [86, 75]. This

ability allows them to prune their growth to an implicit surface. Recent follow-up

work extends this technique to larger models by decomposing them into separate guide

regions with limited interaction [4]. These guide methods were carefully designed for

the specific problem of fitting procedural models to shapes. In contrast, our method

learns how to guide procedural models and is generally applicable to constraints which

can be expressed as a likelihood function.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 86

Neural Networks for Procedural Modeling Previous work has found other

ways to apply neural networks to procedural modeling. One recent project uses

neural networks as computationally inexpensive proxies for costly scoring functions

in an inverse urban procedural modeling setting [114]. Another uses an autoencoder

network to learn a low-dimensional representation space in which it is easy to explore

the variability in a procedural model’s output [132]. Our use of neural networks

di↵ers from both of the above projects, as we use them to capture constraint-induced

dependencies via feedforward functions.

Neural Variational Inference Our method is also inspired by recent work in

variational inference [72, 88, 53]. These algorithms use neural networks to define more

expressive parametric families of probability distributions. They train stochastic deep

belief networks and autoencoders, primarily modeling distributions over images for

computer vision applications. Our method uses a di↵erent learning objective, and we

focus on training procedural models with more complex recursive control flow.

The Neural Adaptive Sequential Monte Carlo algorithm is most similar to our

method; it uses a similar learning objective and aims to train more e�cient SMC

importance samplers [33]. However, they focus on inference in time series models,

such as nonlinear state space models.

6.2 Approach

In this section, we motivate and outline the process of creating, training, and using

neurally-guided procedural models.

6.2.1 Motivation

We motivation our approach using a simple program chain that recursively generates

a random sequence of linear segments, constrained to match a target image. Fig-

ure 6.2a shows the text of this program, along with samples generated from it (drawn

in black) against several target images (drawn in gray). Chains generated by running

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 87

function chain(pos, ang) {
var newang = ang + gaussian(�, PI/8);
var newpos = pos + polarToRect(LENGTH, newang);
genSegment(pos, newpos);
if (flip(�.5)) chain(newpos, newang);

}

Forward
Samples

SMC
Samples
(N = 10)

(a)

function chain_neural(pos, ang) {
var newang = ang + gaussMixture(nn1(...));
var newpos = pos + polarToRect(LENGTH, newang);
genSegment(pos, newpos);
if (flip(nn2(...))) chain_neural(newpos, newang);

}

Forward
Samples

SMC
Samples
(N = 10)

(b)

Figure 6.2: Transforming a simple linear chain model into a neurally-guided procedu-
ral model. (a) The original program. When the program’s output (shown in black)
is constrained to match a target image (shown in gray), forward sampling gives poor
results. SMC sampling performs better but requires far more than 10 particles to
achieve good results for all targets. (b) The neurally-guided program, where param-
eters of random choices are computed via neural networks. The neural nets receive
the target image and all previous random choices as input (abstracted as “...”; see
Figure 6.3b). Once trained, forward sampling from this program adheres closely to
the target image, and SMC with 10 particles consistently produces good results.

the program forward do not match the targets, since forward sampling is oblivious to

the constraint. Instead, we can generate constrained samples using Sequential Monte

Carlo (SMC) [91]. SMC generates multiple samples, or particles, in parallel, resam-

pling them at each step of the program to favor constraint-satisfying partial outputs.

This results in final chains that more closely match the target images. However, the

algorithm requires many particles—and therefore significant computation—to pro-

duce acceptable results. Figure 6.2a shows that N = 10 particles is not su�cient.

In an ideal world, we would not need costly inference algorithms to generate

constraint-satisfying results. Instead, we would have access to an ‘oracle’ program,

chain_perfect, that perfectly fills in the target image when run forward. What form

might this program take? At each step, it would need access to the target image,

to know where to grow the chain next. It would also need to see the output it has

already generated, to know when it has filled the target and can stop growing the

chain.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 88

Our insight is that while oracle programs such as chain_perfect can be di�cult or

impossible to write by hand, it is possible to learn a program chain_neural that comes

close. Figure 6.2b shows our approach. For each random choice in the program text

(e.g. gaussian, flip), we replace the parameters of that choice with the output of a

neural network. This neural network’s inputs (abstracted as “...”) include the target

image as well the choices the program has made thus far. The network thus shapes

the distribution over possible choices, guiding the programs’s future output based on

the target image and its past output. These neural nets a↵ect both continuous choices

(e.g. angles) as well as control flow decisions (e.g. recursion): they dictate where the

chain goes next, as well as whether it keeps going at all. For continuous choices such

as gaussian, we also modify the program to sample from a mixture distribution. This

helps the program handle situations where the constraints permit multiple distinct

choices (e.g. in which direction to start the chain for the circle-shaped target image

in Figure 6.2).

When properly trained, a neurally-guided procedural model such as chain_neural

generates constraint-satisfying results more e�ciently than its un-guided counterpart.

Figure 6.2b shows example outputs from chain_neural. Forward samples adhere closely

to the target images, and SMC with 10 particles is su�cient to produce chains that

fully fill the target shape. The next sections of the chapter describe the process of

building and training these neurally-guided procedural models in more detail.

6.2.2 System Overview

Figure 6.3 shows a high-level overview of our workflow for defining, training, and

using neurally-guided procedural models. It consists of the following steps:

Transform The procedural model is first transformed by inserting one neural net-

work for each random choice in the program text and turning continuous random

choices into mixture distributions (Figure 6.3a-b). The network receives as input

the constraint (e.g. a target image) and all previously-made random choices (shown

grayed out in Figure 6.3a-b) and outputs the parameters for the choice (e.g. Gaussian

means, variances, and mixture weights). We perform this transformation manually;

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 89

!!!!!=!0.71!
!!!!!=!true!
!
!!!!!=!3!

…
"

!!!!!=!gaussMixture(!)!
!

…
"

x1
x2

xn

xn+1

!!!!!=!0.71!
!!!!!=!true!
!
!!!!!=!3!

…
"

!!!!!=!gaussian(!!,!!)!
!

…
"

µ �

x1
x2

xn

xn+1

(a) Procedural Model

NNn+1

Transform

Train
(SGD)

Generate
(SMC)

Neurally-Guided
Procedural Model(b)

(c) SamplesConstraints

Figure 6.3: Overview of our approach. (a) We start with a procedural model: a pro-
gram that makes a sequence of random choices x1 . . .xm

. (b) The procedural model
is transformed into a neurally-guided procedural model by adding a neural network
at each random choice. The network predicts the parameters of the random choice
as a function of the constraints and the previous random choices (shown grayed-out).
(c) An SMC sampling algorithm generates samples from the constrained procedu-
ral model. A stochastic gradient learning algorithm then trains the neurally-guided
procedural model to maximize the probability of generating these samples.

it could be automated via source-to-source compilation. The neural networks can

capture multiple di↵erent constraints, but an appropriate architecture for them de-

pends on the generative paradigm and the output domain of the procedural model

(e.g. images, 3D models, etc.) In Section 6.4, we present an architecture for 2D L-

system-like procedural models which generate images. In particular, we describe how

our implementation converts the previous random choices into a fixed-width vector

appropriate for input to a neural net.

Generate Given a constraint, such as a target image, Sequential Monte Carlo gen-

erates samples from the constrained procedural model (Figure 6.3c). Our system uses

the version of SMC presented earlier in Chapter 5, where particles are resampled after

the program generates a new piece of geometry. It also uses the trained models as

importance samplers for this SMC algorithm when generating final results.

Train The generated samples are then used to train the neural networks: the desired

outcome is a set of network parameters that make the model more likely to generate

these samples when run forward. We derive the learning objective in Section 6.3 and

the details of our stochastic gradient learning method in Section 6.4. The trained

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 90

neurally-guided model can then quickly generate more samples, which can serve as

further training data for refining the model, if desired.

6.3 Mathematical Foundations

Having outlined our approach, we now formally define neurally-guided procedural

models. For our purposes, a procedural model is a generative probabilistic model of

the following form:

P
M

(x) =
|x|Y

i=1

p
i

(x
i

;�
i

(x1, . . . ,xi�1))

Here, x is the vector of random choices the model makes as it executes (the dimen-

sionality of x may be variable, as with recursive procedural models such as stochastic

L-systems). The p
i

’s are local probability distributions from which each successive

random choice is drawn. p
i

is parameterized by a set of parameters (e.g. mean and

variance, for a Gaussian distribution), which are determined by some function �
i

of

the previous random choices x1, . . . ,xi�1. The total probability density is the product

of these local probabilities, according to the chain rule.

A constrained procedural model is a procedural model whose probability distribu-

tion is modulated by some likelihood function `(x, c), i.e. a scoring function indicating

how well an output of the model satisfies some constraint c. For example, c could be

an image, with `(·, c) measuring similarity to that image. By Bayes’ rule:

P
CM

(x|c) = 1

Z
· P

M

(x) · `(x, c)

where Z is a normalizing constant. The set of all constraints c supported by the

procedural model forms the constraint space C (e.g. all images, all binary mask

images, etc.)

A neurally-guided procedural model modifies a procedural model by, for each local

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 91

probability p
i

, replacing the parameter function �
i

with a neural network:

P
GM

(x|c; ✓) =
|x|Y

i=1

p̃
i

(x
i

; NN
i

(x1, . . . ,xi�1, c; ✓))

The neural nets receive the previous random choice values and the constraint as input,

and are themselves parameterized by ✓. p̃
i

is a mixture distribution if random choice

i is continuous; otherwise, p̃
i

= p
i

.

In training a neurally-guided procedural model, our goal is to find the parameters ✓

such that P
GM

is as close as possible to P
CM

for all supported constraints. Formally,

we seek to minimize the conditional KL divergence DKL(PCM

||P
GM

). Given some

prior distribution P (c) over constraints c 2 C, our optimization objective is:

min
✓

DKL(PCM

||P
GM

) (6.1)

= min
✓

E
P (c)

E
PCM(x|c)

log

P
CM

(x|c)
P
GM

(x|c; ✓)

��

= min
✓

E
P (c)

h
E
PCM(x|c)

h
logP

CM

(x|c)� logP
GM

(x|c; ✓)
ii

= max
✓

E
P (c)

h
E

PCM(x|c)

h
logP

GM

(x|c; ✓)� logP
CM

(x|c)
ii

= max
✓

E
P (c)

h
E

PCM(x|c)

h
logP

GM

(x|c; ✓)
ii

⇡ max
✓

1

N

NX

s=1

logP
GM

(x
s

|c
s

; ✓)

x
s

⇠ P
CM

(x) , c
s

⇠ P (c)

In the last step, we approximate the expectations with an average over a finite set

of samples x
s

, c
s

drawn from the constrained procedural model P
CM

using SMC and

the constraint prior P (c). If we view these samples as a training data set, then this

optimization objective is simply maximizing the log-likelihood of the training data

under the neurally-guided model P
GM

.

With such a training set in hand, optimization proceeds via stochastic gradient

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 92

ascent using the gradient

r logP
GM

(x|c; ✓)

=
|x|X

i=1

r log p̃
i

(x
i

; NN
i

(x1, . . . ,xi�1, c; ✓))
(6.2)

Is is worth noting that DKL(PCM

||P
GM

) is not the only measure of distance between

probability distributions we could have used. In particular, several related works have

used the other direction of KL divergence, DKL(PGM

||P
CM

), due to its attractive

properties: it requires training samples from P
GM

, which are much less expensive

to generate than samples from P
CM

. It is the optimization objective used in many

variational inference algorithms [120, 45, 72] as well the REINFORCE algorithm

for reinforcement learning [117]. When used for procedural modeling, however, this

objective leads to models whose outputs lack diversity, making them unsuitable for

generating visually-varied content. This behavior is due to a well-known property of

the objective: minimizing it produces approximating distributions that are overly-

compact, i.e. concentrating their probability mass in a smaller volume of the state

space than the true distribution being approximated [64].

6.4 Implementation

In this section, we describe an implementation of neurally-guided accumulative proce-

dural models: models that iteratively or recursively add new geometry to a structure.

Most growth models, such as L-systems, are accumulative [84]. This is in contrast

with other modeling paradigms: spatial subdivision, such as architectural split gram-

mars [74]; object subdivision, such as fractal terrain [59]; or simulation, such as

erosion-based terrain [115]. For our purposes, a procedural model is accumulative

if, while executing, it provides a ‘current position’: a point p from which geometry

generation will continue. We focus on 2D models (p 2 R2), though the techniques

we present extend naturally to 3D.

We first describe the neural network architecture used by the neurally-guided

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 93

Fully
Connected

(FC)
tanh FC Bounds Output

Params

nf

na

np
nf

2

36c

36c

nf

2
np

function(branch((pos,(ang,(width()({...}(

Target
Image

(50x50)

Convolve +
Downsample

Convolve +
DownsampleCurrent

Partial
Output
(50x50)

Target Image Features

Partial Output Features

Local State Features

Figure 6.4: Neural network architecture for image-matching procedural models. The
network uses a multilayer perceptron which takes a vector of features as input and
outputs the parameters for a random choice probability distribution. The input
features come from three sources. Local State Features are the arguments to the
function in which the random choice occurs. Target Image Features come from 3x3
pixel windows of the target image, extracted at multiple resolutions, around the
procedural model’s current position. Partial Output Features are analogous windows
extracted from the partial image the model has generated. All of these features can
be computed from the target image and the sequence of random choices made thus
far.

models before giving details on how we train them.

6.4.1 Network Architecture

Our neural networks take as input the constraint c (in this case, a target image)

and all previously-made random choices, and output the parameters of a random

choice. Figure 6.4 shows our network architecture. We use a multilayer perceptron

(MLP) architecture, because it is simple, easy to scale, and is a universal function

approximator [97, 15]. Our MLP takes n
f

inputs, has one hidden layer of size n
f

/2 with

a tanh nonlinearity, and has n
p

outputs, where n
p

is the number of parameters the

random choice expects. Since some parameters are bounded (e.g. Gaussian variance

must be positive), each output is remapped via an appropriate bounding transform

(e.g. ex for non-negative parameters). We experimented with more hidden layers but

found that this did not improve performance.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 94

The inputs for the MLP come from several sources, each providing the network

with decision-critical information. All of these features can be computed from the

target image and the choices-so-far; for e�ciency, we compute them incrementally as

the program runs.

Local State Features The first set of relevant data is the local state of the pro-

cedural model: its current position p, the current orientation of any local reference

frame, its current recursion depth, etc. Our networks access this information via the

arguments of the function in which the random choice occurs. We extract all n
a

scalar

arguments, normalize them to [�1, 1], and pass them to the MLP.

Target Image Features To make appropriate decisions for matching a target im-

age, the network must have access to that image. The raw pixels provide too much

data; we need to summarize the relevant image contents. Convolutional neural net-

works reduce an image to a fixed-width feature vector but are aimed at classification

tasks: they detect features but are intentionally invariant to where those features

occur [55].

Instead, we use a di↵erent, location-sensitive architecture. We extract a 3x3 win-

dow of pixels around the model’s current position p. We do this at four di↵erent

resolution levels, with each level computed by convolving the previous level with a

3x3 kernel and then downsampling via a 2x2 box filter. For a image with channel

depth c, this results in 36c features. Together, these features summarize what the

target image looks like from the procedural model’s current position, where resolution

decreases with distance. This architecture is similar to the foveated ‘glimpses’ used

in recent work on neural models of visual attention [73].

Partial Output Features The target image features provide the network with

information it needs to generate matching content with accuracy (e.g. how to stay

within a target shape) However, they do not provide the information necessary to

achieve completeness (e.g. how to completely fill in a target shape). To give the

network this capability, we also extract multi-resolution windows from the partial

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 95

output image generated by the procedural model thus far. This adds another 36c

input features.

The parameters ✓ of this architecture consist of the weights and biases for both

fully-connected layers in the MLP, as well as the kernel weights and biases for the

three convolution + downsampling layers on each image. Each network typically has

around several thousand such parameters. For example, given a program with four

local features (position x, position y, angle, width) which targets a one-channel image,

the network that predicts the parameters of a four-component Gaussian mixture has

3466 parameters.

6.4.2 Training

We train neurally-guided procedural models by stochastic gradient ascent using the

gradient in Equation 6.2. Our system computes this gradient via backpropagation

from the log p̃
i

’s to the neural network parameters ✓. We use the Adam algorithm

for stochastic gradient optimization, with ↵ = � = 0.75 and an initial learning rate

of 0.01 [52]. We found that a mini-batch size of one worked best in our experiments:

more frequent gradient updates led to faster convergence than less-frequent-but-less-

noisy updates. We terminate training after 20000 gradient updates.

6.4.3 Implementation Details

We implemented our prototype system in the Javascript-based probabilistic program-

ming language WebPPL [30], with neural networks implemented using an open-source

Javascript library for neural computation.1 The source code for our system is available

at https://github.com/dritchie/webppl/tree/variational-neural-gl.

6.5 Experiments

In this section, we qualitatively and quantitatively evaluate how well our neurally-

guided procedural models capture image-based constraints. We first describe our

1https://github.com/dritchie/adnn

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 96

Scribbles

Glyphs

PhyloPic

Figure 6.5: Example images from our datasets.

databases of target images before presenting the details of several experiments. All

timing data reported in this section was collected on an Intel Core i7-3840QMmachine

with 16GB RAM running OSX 10.10.5.

6.5.1 Image Datasets

As shown in Equation 6.1, each training sample from a procedural model must be

paired with a constraint c drawn from a prior P (c) over possible constraints. During

training, we sample target images uniformly at random from a database of training

images. In our experiments, we use the following image collections:

• Scribbles: A set of 49 binary mask images drawn by hand with the brush tool

in Photoshop. These were designed to cover a range of possible shapes with

thick and thin regions, high and low curvature, and di↵erent self-intersections.

• Glyphs: A subset of 197 glyphs from the FF Tartine Script Bold typeface.

Consists of all glyphs which have only one foreground connected component

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 97

and at least 500 foreground pixels when rendered at 129x97.

• PhyloPic: A set of 35 images from PhyloPic, a database of silhouettes for

plants, animals, and other organisms.2

When using these images for training, we augment the datasets by also including a

horizontally-mirrored duplicate of each image. We also annotate each image with

a starting point and starting direction from which to initialize the execution of a

procedural model. Figure 6.5 shows some representative images from each collection.

6.5.2 Shape Matching

In our first set of experiments, we train neurally-guided procedural models to capture

2D shape matching constraints, where the target shape is specified as a binary mask

image. If D is the spatial domain of the image, and I(x) is the function which renders

the current partial output defined by random choices x, then the likelihood function

for this constraint is

`
shape

(x, c) = N (
sim(I(x), c)� sim(0, c)

1� sim(0, c)
, 1, �

shape

) (6.3)

sim(I1, I2) =

P
p2D w(p) · 1{I1(p) = I2(p)}P

p2D w(p)

w(p) =

8
>>><

>>>:

1 if I2(p) = 0

1 if ||rI2(p)||= 1

w
filled

if ||rI2(p)||= 0

where N is the normal distribution. This function encourages the rendered image

to be similar to the target mask, where similarity is normalized against the target’s

similarity to an empty image 0. Each pixel p’s contribution to the similarity is

weighted by w(p), determined by whether the target mask is empty, filled, or has

an edge at that pixel. We use w
filled

= 0.6̄, so that empty and edge pixels are

worth 1.5 times as much as filled pixels. This encourages the program to match

2http://phylopic.org

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 98

perceptually-important contours before filling in flat regions. We set �
shape

= 0.02 in

all experiments.

We wrote a WebPPL program which recursively generates vines with leaves and

flowers and then trained a neurally-guided version of this program to capture the

above likelihood. The model was trained on 10000 sample traces, each generated using

SMC with 600 particles. Target images were drawn uniformly at random from the

Scribbles dataset. Each sample took on average 17 seconds to generate; parallelized

across four CPU cores, the entire set of samples took approximately 12 hours to

generate (later in this section, we show that far fewer samples are actually needed).

Training took 55 minutes in our single-threaded Javascript implementation. These

times could be reduced with more e�cient implementations (e.g. leveraging GPUs

for training).

Figure 6.1 shows example outputs from the vines program. The weighting scheme

of `
shape

causes the geometry to adhere to target shape contours, making the shape

recognizable without cluttering interior regions and obscuring the vines’ structural

characteristics. This behavior is not easy to achieve with a purely generative space-

filling approach such as environmentally-sensitive L-systems [86], but it is simple to

specify with constraints. The top row outputs were generated using 10-particle SMC

with the trained neurally-guided model, which reliably produces recognizable results.

In contrast, 10-particle SMC with the unguided model produces totally unrecogniz-

able results (middle row). Because the neural networks make the guided model more

computationally-expensive to evaluate, a more equitable comparison is to give the

unguided model the same amount of wall-clock time as the guided model—this cor-

reponds to ⇠ 50 particles, in this case (bottom row). While the resulting outputs

fare better, the target shape is still obscured. We should also note that the unguided

model is unpredictable at such low particle counts; results of even this quality took

many tries to obtain at 50 particles. In practice, we find that the unguided model

needs ⇠200 particles to reliably match the performance of the guided model. Fig-

ure 6.6 shows more outputs from the vines program, and Figure 6.7 shows example

outputs from a neurally-guided procedural lightning program.

Figure 6.8 shows a quantitative comparison between five di↵erent models on the

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 99

Target “Ground Truth” Guided

Unguided

(Equal N)

Unguided

(Equal Time)

N = 600 , 30.26 s N = 10 , 1.5 s N = 10 , 0.1 s N = 45 , 1.58 s

N = 600 , 33.5 s N = 10 , 1.23 s N = 10 , 0.14 s N = 40 , 1.28 s

N = 600 , 25.5 s N = 10 , 1.04 s N = 10 , 0.14 s N = 40 , 1.05 s

N = 600 , 25.55 s N = 15 , 1.75 s N = 15 , 0.23 s N = 50 , 1.73 s

N = 600 , 20.76 s N = 10 , 0.81 s N = 10 , 0.15 s N = 40 , 0.85 s

Figure 6.6: Using Sequential Monte Carlo to make a vine-growth procedural model
match target images. N is the number of SMC particles used. The “Ground Truth”
column shows an example result after running SMC with the unguided model with a
large number of particles (N = 600); these images represent the best possible result
for a given target. Our neurally-guided procedural models can generate results of
nearly this quality in a couple seconds; the unguided model struggles given the same
number of particles or the same computation time.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 100

0.99 s 0.81 s 1.01 s 1.03 s 0.9 s 1.16 s 0.86 s 1.08 s

Figure 6.7: Targeting letter shapes with a neurally-guided procedural lightning pro-
gram. Generated using SMC with 10 particles; compute time required is shown below
each letter. Best viewed on a high-resolution display.

shape matching task:

• Unguided: The original, unguided procedural model.

• Constant Params: The neural network for each random choice is simply a set

of constant parameters; training this model finds the optimal constants. This

is also known as a partial mean field approximation [120].

• + Local State Features: Adding the local state features described in Sec-

tion 6.4.

• + Target Image Features: Adding the target image features described in

Section 6.4.

• All Features: The full neural net architecture described in Section 6.4, includ-

ing local state features, target image features, and partial output features.

We test each model on the images in the Glyph dataset and report the median

normalized similarity-to-target achieved (i.e. argument one to the Gaussian in Equa-

tion 6.3). Figure 6.8a plots this average similarity as the number of SMC particles

increases. The performance of the neurally-guided models improves with the addition

of more features; at 10 particles, the full model is already near the peak performance

asymptote. Figure 6.8b shows the wall-clock time each method requires as the de-

sired average similarity increases. The vertical gap between the two curves shows the

speedup given by neural guidance, which can be as high as 10x. Note that we trained

on the Scribbles dataset but tested on the Glyphs dataset; these results suggest that

our models can generalize to qualitatively-di↵erent previously-unseen images.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 101

0 1 2 3 4 5 6 7 8 9 10 11
Number of Particles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
im

ila
rit

y

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Condition
All Features

+ Target Image Features

+ Local State Features

Constant Params

Unguided

(b)

Figure 6.8: Performance comparison for the shape matching problem. “Similarity”
is median normalized similarity to target mask, averaged over all targets in a test
dataset. Lines drawn in lighter shades show 95% confidence bounds. (a) Performance
as the number of SMC particles increases. The neurally-guided model achieves higher
average similarity as more features are added. (b) Computation time required as de-
sired similarity increases. The vertical gap between the two curves indicates speedup.
Despite the neurally-guided model being more expensive to evaluate, it still reliably
generates high-similarity results significantly faster than the unguided model.

Figure 6.9 shows the benefit of using mixture distributions for continuous random

choices in the guided model. The experimental setup is the same as in Figure 6.8. We

compare a model which uses 4-component mixture distributions with a no-mixture

model. The with-mixtures model provides a noticeable performance boost, which

we alluded to in Section 6.2: when matching complex shapes with junctions and

intersections, such as the crossing of the letter ‘t,’ the program benefits from modeling

uncertainty at these points with multi-modal distributions. We found 4 mixture

components su�cient for our examples.

We also investigate how the number of training samples a↵ects performance. Fig-

ure 6.10 plots the median similarity at 10 particles as training set size increases. Per-

formance increases rapidly for the first few hundred samples before appearing to level

o↵ (the noise in the curve is due to randomness in neural net training initialization).

This suggests that ⇠1000 sample traces is su�cient, which may seem surprising, as

many published deep learning systems require millions of training examples [55]. In

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 102

0 1 2 3 4 5 6 7 8 9 10 11
Number of Particles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
im

ila
rit

y

Condition
With Mixture Distributions

Without Mixture Distributions

Figure 6.9: The e↵ect of guiding continuous random choices with mixture distri-
butions. Using 4-component mixtures for all continuous random choices provides a
noticeable boost in performance.

10 20 50 100 200 500 1000 2000
Number of Training Traces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
im

ila
rit

y
at

 1
0

P
ar

tic
le

s

Figure 6.10: The e↵ect of training set size on performance (at 10 SMC particles),
plotted on a logarithmic scale. Average similarity-to-target increases sharply for the
first few hundred sample training traces, then appears to plateau at around 1000
traces. Noise in the plot is due to randomness in neural net training, as di↵erent
training sessions converge to di↵erent local optima of the learning objective function.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 103

our case, each training trace contains up to thousands of random choices, each of

which provides a learning signal—in this way, the training data is “bigger” than it

appears. Our implementation can generate 1000 samples in just over an hour using

four CPU cores. As mentioned previously, this time could be reduced by ‘boostrap-

ping’ the system: training on smaller subsets of data and using the partially-learned

model to generate further data faster.

6.5.3 Stylized “Circuit” Design

Thus far, we have focused on image-matching constraints. However, the architecture

we have presented can learn other types of image-based constraints. In this section,

we constrain the vines program to generate outputs which resemble stylized circuit

designs.

Dense packing of long wire traces is one of the most striking visual characteristics

of circuit boards. To achieve dense packing, we encourage the program to fill a

certain percentage ⌧ of the image (⌧ = 0.5 in the subsequent results). To mimic the

appearance of traces, we encourage the output image to have a dense, high-magnitude

gradient field, as the vines program can best achieve this result by creating many long

rectilinear or diagonal edges. These constraints result in the following likelihood:

`
circ

(x) = N (edge(I(x)) · (1� ⌘(fill(I(x)), ⌧)), 1, �
circ

) (6.4)

edge(I) =
1

|D|
X

p2D

||rI(p)||

fill(I) =
1

|D|
X

p2D

I(p)

where ⌘(x, x̄) is the relative error of x from x̄ and �
circ

= 0.01. Finally, we also

include a separate term that penalizes the program from generating geometry outside

the bounds of the image; this encourages the program to fill in a rectangular “die”-like

region.

To guide this program, we use the same architecture as before, minus the tar-

get image features (since there is no target image). We train the neurally-guided

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 104

“Ground Truth”

N = 600
Guided

N = 15

Unguided

(Equal N)
Unguided

(Equal Time)

Figure 6.11: Constraining the vine-growth program to generate circuit-like patterns.
The “Ground Truth” outputs took around 70 seconds to generate; the outputs from
the guided model took around 3.5 seconds.

0 1 2 3 4 5 6 7 8 9 10 11
Number of Particles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
co

re

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Score

0.0

0.5

1.0

1.5

2.0

2.5

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Condition
Neurally-Guided

Unguided

(b)

Figure 6.12: Performance comparison for the circuit design problem. “Score” is me-
dian normalized score (i.e. argument one to the Gaussian in Equation 6.4), averaged
over 50 runs. The neurally-guided version achieves significantly higher average scores
than the unguided version given the same number of particles or the same amount of
compute time.

model using 2000 traces generated using SMC with 600 particles. Sample generation

took about 10 hours on four CPU cores, and training took just under two hours. Fig-

ure 6.11 shows some outputs from this program, and Figure 6.12 shows a performance

comparison between unguided and neurally-guided models for this task. As with the

shape matching examples, the neurally-guided model generates high-scoring results

significantly faster than the unguided model.

CHAPTER 6. LEARNING TO SAMPLE USING NEURAL GUIDES 105

6.6 Chapter Summary

This chapter introduced neurally-guided procedural models: constrained procedural

models that use neural networks to capture constraint-induced dependencies. We

developed a mathematical framework for defining and training such models. We also

described a specific neural architecture for accumulative models that generate images.

Finally, we evaluated the performance of neurally-guided models, demonstrating that

they can generate high-quality results significantly faster than unguided models.

One limitation of our system is its need for training data, which must be gener-

ated via expensive inference. This can be a significant up-front cost, especially for

computationally-expensive models. Thus, our method is not well-suited for scenarios

where the procedural model changes rapidly, such as speeding up the inner loop of a

development and debugging cycle. Instead, it is best suited for scenarios where the

model is fixed, such as deploying a finalized procedural model as part of a design tool.

It may be particularly attractive for online, multi-user deployments, where the system

can gather example results from the community, periodically retrain, and push the

updated procedural model to users.

Our method is also not well-suited for capturing hard constraints, which some

visual e↵ects necessitate (e.g. symmetries), as it requires a continuous probability for

each training sample. While hard constraints can sometimes be usefully approximated

with tight soft constraints, neural networks such as ours are best at approximating

noisy and/or random functions, not precise, deterministic relationships. Other tech-

niques are needed for generatively capturing these kinds of constraints.

Chapter 7

Conclusions and Future Directions

In this thesis, we have advocated the use of probabilistic programming languages

(PPLs) for procedural modeling and design. We showed examples of how complex

models can be expressed in relatively clear, concise code, requiring users to provide

domain knowledge but not requiring them to be inference experts. We then pointed

out that such model complexity leads to inference challenges: wasted computation,

tight constraints, branching structures, and the expense of random search.

To address these problems, we introduced new inference techniques to the field of

procedural modeling and design. To eliminate wasted computation during MH pro-

posals, we developed the C3 system for lightweight, incrementalized MCMC, leading

to order-of-magnitude speedups. To e�ciently explore design spaces shaped by tight

constraints, we demonstrated how Hamiltonian Monte Carlo (HMC) could sample

from previously-intractable programs such as stable stacking structures. To han-

dle branching, we developed Stochastically-Ordered Sequential Monte Carlo, showing

that it can more quickly and reliably find high-probability outputs for procedural

shape-matching problems. Finally, to make the random search methods of inference

less random, we introduced neurally-guided procedural models which can learn how

to satisfy constraints up to an order of magnitude faster.

106

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 107

7.1 Interoperability

The four methods we presented in this thesis do not each have to operate in a vacuum;

they can be assembled into an ecosystem of interoperable inference components.

This is the approach we have taken in the ongoing development of the WebPPL

probabilistic programming language [30]. In our implementation, C3 and HMC are

MCMC kernel functions, which can be programmatically composed to create new

kernels—for example, one that proposes to discrete random choices using C3 and

to continuous choices using HMC. In addition, WebPPL’s Sequential Monte Carlo

(SMC) implementation supports rejuvenation, i.e. changing past choices in the se-

quence using MCMC [28]. Any MCMC kernel can be used for rejuvenation, including

C3 and HMC.

Neurally-guided procedural models also interoperate with the other inference al-

gorithms we have discussed. In Chapter 6, we used SMC to generate training data for

neural guides, but one can in fact use any inference algorithm to generate this data,

including MH. And while we focused on using the trained neural guides as importance

distributions for SMC, they can also be used as proposal distributions for MH. We

have begun e↵orts to integrate these concepts into WebPPL for general programs.

7.2 Future Work

To move PPLs out of the domain of research and into real-world applications, there is

still much to be done. Inference must be be even faster, approaching interactive rates,

to be usable in real-time settings such as games and interactive design tools. And

the easier it is to write probabilistic programs, the faster and wider they can spread.

Along these lines, opportunities for future work fall into several broad themes:

7.2.1 Program Analysis & Transformation

Production PPL systems will need to squeeze every last drop of exploitable structure

out of programs, analyzing and then manipulating them into their most e�cient

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 108

forms.

Non-standard interpretations have already proven useful in this space [118]. The

automatic di↵erentiation (AD) transformation used by HMC is one such example: the

program is transformed to compute derivatives in addition to values. As mentioned

in Section 4.5, smooth interpretation can take this idea further by automatically

constructing a di↵erentiable approximation to any program (even those with loops

and conditionals). These ideas have been applied to SMC as well. Abstract particle

algorithms automatically construct and operate on a hierarchy of simplified variable

domains, allowing inference to converge at a coarse resolution before tackling fine-

scale details [109, 107]. We expect to see more innovation along these lines in years

to come.

These types of transformations can introduce computational overhead which care-

ful program analysis can remove. In C3, dependency analysis could help determine

statically which random choices flow to which other functions, allowing the system

to perform fewer of the runtime input equality checks introduced by the caching

transform. C3 also only requires continuations at random choice points, yet the stan-

dard CPS transform applies to the entire program. Detecting and fusing blocks of

purely deterministic code before applying the CPS transform (or collapsing them post-

transform) could improve performance. A similar phenomenon occurs with HMC, as

standard AD implementations generate one computation graph node for each primi-

tive math operation. Programs could make simpler graphs by statically “lowering” all

operations that happen within a single basic block [9]. Or, already-constructed graphs

could be simplified by run-time tracing followed by symbolic simplification [126, 19].

Neural guidance is also a form of program transformation. Specifically, it replaces

the dataflow paths that flow into random choices with new dataflow paths made out of

neural networks. More extensive transformations are also possible, such as changing

the control flow of the program. Transformations like this might make it possible for

guide programs to capture constraints that dataflow-replacement alone cannot.

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 109

7.2.2 Runtime Systems

Production PPL systems will also need to run programs with the fastest possible

platforms and execution environments. Many of the early research PPLs in existence

today are dynamically-typed and run in interpreters [29, 65] or virtual machines with

JIT compilers [121, 30], which limits their possible performance. One noteworthy

exception is Quicksand, a language we implemented in earlier work to experiment with

statically-typed, compiled probabilistic programs [89]. We found some performance

improvements, though the lower-level nature of the language makes some inference

algorithms di�cult to implement with peak asymptotic e�ciency (e.g. MH and SMC,

since neither first-class continuations nor first-class functions are available in the host

language, Terra). Another notable exception is Probabilistic C, which uses OS-level

multi-processing to run SMC and Particle MCMC methods on multiple cores [79].

Leveraging parallel hardware like this will be especially important for future practical

PPL systems.

Along these lines, GPUs still remain largely untapped for probabilistic program-

ming. There are wide-open opportunities to exploit GPU parallelism either for in-

ference algorithms themselves (e.g. parallel execution of SMC particles) or for the

constituent parts of a probabilistic program (e.g. accelerating matrix computations

in complex likelihood functions).

7.2.3 Amortized Inference

As we showed in Chapter 6, PPL systems can see significant performance boosts by

learning from their own outputs, either over time or as a batch pre-process.

Our work on neurally-guided procedural models is a first step in this direction,

but there are many more opportunities along these lines. We would like to extend the

idea of neural guidance to work with more general programs, not just L-system-like

programs. Recent work on recurrent visual attention models is particularly promising,

as these networks could help a guide program learn both what to look at in its partial

output, as well as what choices to make given what it has seen [73, 25].

Amortized inference is a broader concept that has implications beyond neural

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 110

guide programs. For example, in our experiments with using SMC to control procedu-

ral model shapes, we use the current partial likelihood score as the particle resampling

weight. While this can work, it also results in greedy behavior, since the weights do

not take into account the expected future likelihood score of each particle. It might

be possible to learn a model of this expected future score, in a similar fashion to

how the AlphaGo system learns a value function for Markov Decision Processes [99].

And in SOSMC, we have thus far only used a uniform stochastic policy for future

selection—it might be possible to learn non-uniform stochastic policies over time.

Such policies would gradually develop an ‘intuition’ for which execution branches are

likely to be fruitful given the program’s execution history.

7.2.4 Authoring & Editing

No matter how fast PPL inference becomes, the programs being run through inference

have to come from somewhere. Thus far, we have assumed that a programmer writes

the program in full. But to make PPL inference accessible and desirable to the widest

range of creative people, it will need to accommodate those who are not comfortable

with extensive programming.

One seductive idea is to induce probabilistic programs from a (ideally small)

collection of example outputs. Recent research has had some limited successes in

this area, by restricting the class of supported programs and abstractions over pro-

grams [111, 42]. Such general program induction is a highly underconstrained and

challenging problem, but has large potential impact if solved.

Putting a human in the loop of the induction process could make the problem

easier, as well as make the results more satisfying to the user since she can exert direct

control over them. On approach to such “partial program induction” is bidrectional

editing interfaces, where a user can either edit code to a↵ect its output, or edit

outputs to a↵ect the code. Recent research has had some limited successes along

these lines, inferring constant parameters for deterministic programs that generate 2D

vector graphics [13]. Further work is needed to extend these concepts to probabilistic

programs, 3D output domains, and more structural program edits. This is a promising

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 111

avenue for making PPLs more accessible and understandable, so more creative people

can express themselves with these tools.

Appendix A

C3 Speedup Experiment Details

All models use synthetic data. To obtain the throughput values plotted, each model

was run for 1000 MH iterations.

The HMM model uses 10 discrete latent states and 10 discrete observable states.

The Model Size parameter maps to the length of the observed sequence as: Length of

observed sequence = 100 · Model Size. Thus, observed sequence length ranges from

100 to 1000.

The LDA model uses 10 topics, a vocabulary of 100 words, and 20 words per

document. The Model Size parameter maps to the number of observed documents

as: Num observed documents = 5·Model Size. Thus, num observed documents ranges

from 5 to 50, and total number of observed words ranges from 100 to 1000.

The GMM model uses 4 components. The Model Size parameter maps to the

number of observed data points as: Num observed data points = 100 · Model Size.

Thus, the number of observed data points ranges from 100 to 1000.

The HLR model uses scalar data sequences of length 5. The Model Size parameter

maps to the number of data sequences as: Num data sequences = 20 · Model Size.

Thus, the number of data sequences ranges from 20 to 200, and the total number of

scalar data points ranges from 100 to 1000.

112

Appendix B

HMC Model Specifications

B.1 Color Compatibility Model

Our color compatibility model uses soft constraints simplified from the model by Lin

and colleagues [62]. We include saturation, adjacent lightness di↵erence, and adjacent

perceptual di↵erence constraints, since these factors had high learned weights in the

original model. The perceptual di↵erence constraints (implemented as distance in

CIELAB color space) help distinguish image regions without excessive hue contrast.

The lightness di↵erence constraints help prevent equiluminant adjacent regions which

can cause perceived “vibrations” and unstable-looking shapes. Constraints are pa-

rameterized di↵erently if they are applied to foreground (FG) or background (BG)

regions:

Saturation (BG): softeq(
p
a

2+b

2p
a

2+b

2+L

2 , 0.3, 1.0)

Saturation (FG): softeq(
p
a

2+b

2p
a

2+b

2+L

2 , 0.7, 1.0)

Lightness Di↵ (FG-BG): softeq(|�L|
100 , 0.3, 0.4)

Lightness Di↵ (FG-FG): softeq(|�L|
100 , 0.2, 0.4)

Perceptual Di↵: softeq(
p
�L

2+�a

2+�b

2

300 , 0.3, 0.2)

113

APPENDIX B. HMC MODEL SPECIFICATIONS 114

where L, a, b are the color coordinates of a region in CIELAB color space, and�L,�a,

�b are di↵erences between the coordinates of adjacent regions. 100 is the maximum

lightness value, and 300 is the maximum CIELAB distance. The rough shape of these

constraints are based on those in the original model. Our model is a weighted sum of

these factors for each region and each pair of adjacent regions. Saturation constraints

are weighted by the region area, while pairwise adjacent constraints are weighted

uniformly. As in the Lin et al. model, we represent and perform inference on color

random variables in RGB space to ensure that all generated results use colors that

can be visualized.

We also add constraints to enforce semantic properties where needed. We consider

two types of additional constraints in our experiments:

Same-Chroma softeq(
p
�a

2+�b

2

282.9 , 0, �

282.9)

Lightness-Relation softeq(�L

100 , 0.15,
�

100)

where 282.9 is the maximum chroma di↵erence. We set � to 5 in our experiments.

The Same-Chroma constraint dictates that two colors should have the same chro-

matic content (i.e. the same color irrespective of lightness). The Lightness-Relation

constraint enforces a precise directional separation between the lightnesses of two

colors; this constraint is useful for constraining colors to be shades of one another.

B.2 Block Statics Model

In our statics model, blocks are assembled into structures via contacts : wherever two

blocks touch, some internal force distribution arises over the resulting rectangular

contact region. We represent this distribution with forces at each of the contact

region’s four vertices:

• f
n

: a compressive force normal to the contact region.

• f
t1 and f

t2: two friction forces tangent to the contact region.

f
n

is bounded to be non-negative, and f
t1 and f

t2 are bounded to be within |s · f
n

|,
where s is the coe�cient of static friction of the contact. We use s = 0.5 for all results

APPENDIX B. HMC MODEL SPECIFICATIONS 115

presented in Chapter 4 unless noted otherwise. This statics model is essentially the

same as that used by prior work on stable procedural buildings [116]. It is important

to note that because friction force directions are treated as free variables, this model

is not strictly physically accurate; correct handling of frictional contacts in a statics

context is still a challenging problem [113].

Given this statics model, the process for generating a stable structure is straight-

forward. The user first writes a program that generates a random block structure, e.g.

by iteratively stacking and perturbing random blocks. Our system then computes the

net force f̄ and net torque ⌧̄ on the center of mass of each block i and combines these

‘residuals’ into the following factor:

X

i

softeq(||f̄
i

||, 0, �
f

) + softeq(||⌧̄
i

||, 0, �
⌧

)

The bandwidths �
f

and �
⌧

must be set in an appropriately scale-invariant fashion,

so that large structures are not penalized more than small ones. One option is to

define them as percentages of the average external (i.e. due to gravity) force and

torque acting on the structure. We find that 1% tolerance keeps an HMC sampler

su�ciently close to the static equilibrium manifold while still allowing for exploration.

Appendix C

SOSMC Proof of Correctness

We aim to show that the marginal distribution over models generated by SOSMC is

the same as the marginal distribution over models generated by depth-first SMC.

We will use the fact that a random choice variable r in a trace r
n

can be uniquely

addressed by its position in the function call tree of the trace [119]. We call this

address addr(r).

Definition 1. Two variables r1 and r2 are equivalent (r1 ⌘ r2) if their addresses and

values are the same. That is, addr(r1) = addr(r2) and r1 = r2.

Definition 2. Two traces r1
n

and r2
n

are equivalent (r1
n

⌘ r2
n

) if they contain equivalent

variables. That is,

• 8r1
n,i

, 9r2
n,j

such that r1
n,i

⌘ r2
n,j

.

• 8r2
n,j

, 9r1
n,i

such that r2
n,j

⌘ r1
n,i

.

In particular, we assume that equivalent traces are considered equivalent by the

scoring function s(·)—that is, the score assigned to a trace does not depend upon the

order in which it was generated.

116

APPENDIX C. SOSMC PROOF OF CORRECTNESS 117

Assumption 1. If r1
n

⌘ r2
n

, then s(r1
n

) = s(r2
n

). ⇤

Together, these definitions allow us to group traces into equivalence classes X
n

,

where all x
n

= {r
n

,o
n

} 2 X
n

generate the same partial model. Formally, our goal is

to show that P ⇡D
N

(X
N

) = P ⇡S
N

(X
N

). We start with defining the unnormalized density

of an equivalence class by marginalizing out all the orderings that generate it. Let r̂
n

be any trace from equivalence class X
n

. Then:

F
n

(X
n

) =
X

xn2Xn

F
n

(x
n

)

=
X

xn2Xn

s(r
n

) · p
n

(x
n

)

=
X

xn2Xn

s(r
n

)
nY

m=1

|xm\xm�1|Y

i=1

p(x
m,i

|x
m,1:(i�1),xm�1)

=
X

xn2Xn

s(r
n

)
nY

m=1

|rm\rm�1|Y

i=1

p(r
i,m

|par(r
i,m

))

nY

m=1

|om\om�1|Y

j=1

⇡(o
j,m

|x
m

)

= s(r̂
n

)
nY

m=1

|r̂m\r̂m�1|Y

i=1

p(r̂
i,m

|par(r̂
i,m

))

0

@
X

xn2Xn

nY

m=1

|om\om�1|Y

j=1

⇡(o
j,m

|x
m

)

1

A

= s(r̂
n

)
nY

m=1

|r̂m\r̂m�1|Y

i=1

p(r̂
i,m

|par(r̂
i,m

)

We can move the s(r
n

) · · · terms outside the summation because all r
n

are equiv-

alent (Definition 2, Assumption 1) and because the remaining terms—the ordering

probabilities—form a discrete probability distribution whose elements sum to one.

By Equation 5.1, it remains to show that Z⇡D
N

= Z⇡S
N

. By the definition of partition

⇤E�cient, incrementalized implementations that use intermediate results of s(rn�1) to compute
s(rn) must guarantee this property.

APPENDIX C. SOSMC PROOF OF CORRECTNESS 118

function,

Z⇡

N

=

Z

X⇡

F
N

(x)dx =

Z

⌦⇡

F
N

(X)dX

where X ⇡ is the set of all complete traces that can be generated under ordering policy

⇡ and ⌦⇡ is the set of all equivalence classes (from here on, we omit the N subscript

for brevity). Thus it su�ces to show that ⌦⇡S = ⌦⇡D .

Lemma 1. ⌦⇡D = ⌦⇡S , which means

1. 8xD 2 X ⇡D , 9xS 2 X ⇡S such that rD ⌘ rS.

2. 8xS 2 X ⇡S , 9xD 2 X ⇡D such that rS ⌘ rD.

Proof.

1. 8xD 2 X ⇡D , xD 2 X ⇡S , since the fixed ordering generated by ⇡
D

can be gener-

ated by ⇡
S

with nonzero probability.

2. 8xS 2 X ⇡S , create an empty trace rD and walk the function call tree of rS in

depth-first order. When encountering a variable r with location in the call tree

given by addr(r), insert that variable into rD. This process results in a valid

trace in X ⇡D which is equivalent to rS.

We have proven that P ⇡D
N

(X
N

) = P ⇡S
N

(X
N

) for programs that always terminate

after at most N steps. Procedural models that explicitly limit recursion depth or

that stop when geometric features become too small fit this description. Without such

checks, procedural models only almost always terminate after a finite number of steps,

i.e. termination probability approaches one as the number of steps approaches infinity.

The same analysis should hold in this case as well, as probabilistic programs that

terminate with probability one have well-defined marginal distributions over execution

traces [29]. The proof would require a limit argument on N for approximating finite

programs.

Bibliography

[1] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov

Chain Monte Carlo Methods. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 72(3), 2010.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,

New York, NY, USA, 2007.

[3] Fan Bao, Dong-Ming Yan, Niloy J. Mitra, and Peter Wonka. Generating and

Exploring Good Building Layouts. In SIGGRAPH 2013.

[4] Bedřich Beneš, Ondvrej Šava, Radomir Měch, and Gavin Miller. Guided Pro-

cedural Modeling. In Eurographics 2011.

[5] R. Bergman. Wood Handbook – Wood as an Engineering Material. Forest

Products Laboratory, 2010.

[6] R. Bisiani. Beam Search. In S. Shapiro, editor, Encyclopedia of Artificial

Intelligence. 1987.

[7] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller.

Context-specific Independence in Bayesian Networks. In UAI 1996.

[8] Marcus A. Brubaker, Mathieu Salzmann, and Raquel Urtasun. A Family of

MCMC Methods on Implicitly Defined Manifolds. In AISTATS 2012.

[9] Kimberley Burchett, Gregory H. Cooper, and Shriram Krishnamurthi. Lower-

ing: A Static Optimization Technique for Transparent Functional Reactivity. In

119

BIBLIOGRAPHY 120

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Pro-

gram Manipulation, 2007.

[10] Swarat Chaudhuri and Armando Solar-Lezama. Smooth Interpretation. In

PLDI 2010.

[11] Yan Chen, Joshua Dunfield, and Umut A. Acar. Type-Directed Automatic

Incrementalization. In PLDI 2012.

[12] Stephen Chenney and D. A. Forsyth. Sampling Plausible Solutions to Multi-

body Constraint Problems. In SIGGRAPH 2000.

[13] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Programmatic

and Direct Manipulation, Together at Last. In PLDI 2016.

[14] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann. Automatic

Di↵erentiation: From Simulation to Optimization. Computer and Information

Science. Springer, 2001.

[15] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals and Systems, 1989.

[16] Minh Dang, Stefan Lienhard, Duygu Ceylan, Boris Neubert, Peter Wonka, and

Mark Pauly. Interactive Design of Probability Density Functions for Shape

Grammars.

[17] Ana Lucia de Moura and Roberto Ierusalimschy. Revisiting Coroutines. Tech-

nical report, 2004.

[18] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek.

Terra: A Multi-stage Language for High-performance Computing. In PLDI

2013.

[19] Zachary DeVito, Michael Mara, Michael Zollhoefer, Gilbert Bernstein,

Jonathan Ragan-Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher,

and Matthias Niener. Opt: A Domain Specific Language for Non-linear Least

Squares Optimization in Graphics and Imaging. CoRR, arXiv:1604.06525, 2016.

BIBLIOGRAPHY 121

[20] R. Douc and O. Cappe. Comparison of Resampling Schemes for Particle Fil-

tering. In ISPA 2005.

[21] Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte

Carlo Methods in Practice. Springer, 2001.

[22] Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L.

Schwartz, and Scott R. Klemmer. Parallel Prototyping Leads to Better Design

Results, More Divergence, and Increased Self-e�cacy. ACM Trans. Comput.-

Hum. Interact., 17(4), 2010.

[23] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid

Monte Carlo. Physics Letters B, 195(2):216 – 222, 1987.

[24] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven

Worley. Texturing & Modeling: A Procedural Approach. Morgan Kaufmann,

2003.

[25] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray

Kavukcuoglu, and Geo↵rey E. Hinton. Attend, Infer, Repeat: Fast Scene Un-

derstanding with Generative Models. CoRR, arXiv:1603.08575, 2016.

[26] Shaohua Fan. Sequential Monte Carlo Methods for Physically Based Rendering.

PhD thesis, 2006.

[27] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat

Hanrahan. Example-based Synthesis of 3D Object Arrangements. In SIG-

GRAPH Asia 2012.

[28] Walter R. Gilks and Carlo Berzuini. Following a moving target—Monte Carlo

inference for dynamic Bayesian models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 63(1), 2001.

[29] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz,

and Joshua B. Tenenbaum. Church: a language for generative models. In UAI

2008.

BIBLIOGRAPHY 122

[30] Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation

of Probabilistic Programming Languages. http://dippl.org, 2014. Accessed:

2015-12-23.

[31] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Process-

ing, IEE Proceedings F, 140(2), 1993.

[32] E. Goto. Monocopy and associative algorithms in an extended lisp. Technical

report, 1974.

[33] Shixiang Gu, Zoubin Ghahramani, and Richard E. Turner. Neural Adaptive

Sequential Monte Carlo. In NIPS 2015.

[34] Brian Guenter. E�cient Symbolic Di↵erentiation for Graphics Applications. In

SIGGRAPH 2007.

[35] Robert H. Halstead, Jr. MULTILISP: A Language for Concurrent Symbolic

Computation. ACM Trans. Program. Lang. Syst., 7(4), 1985.

[36] Perttu Hämäläinen, Sebastian Eriksson, Esa Tanskanen, Ville Kyrki, and

Jaakko Lehtinen. Online Motion Synthesis Using Sequential Monte Carlo. In

SIGGRAPH 2014.

[37] J. M. Hammersley and K. W. Morton. Poor Man’s Monte Carlo. Journal of

the Royal Statistical Society. Series B (Methodological), 16(1), 1954.

[38] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural

Support for Lock-free Data Structures. In ISCA 1993.

[39] Shawn Hershey, Je↵rey Bernstein, Bill Bradley, Andrew Schweitzer, Noah Stein,

Theophane Weber, and Benjamin Vigoda. Accelerating Inference: towards a

full Language, Compiler and Hardware stack. CoRR, arXiv:1212.2991, 2012.

[40] Matthew D. Ho↵man and Andrew Gelman. The No-U-Turn Sampler: Adap-

tively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine

Learning Research, 2014.

BIBLIOGRAPHY 123

[41] Qiang Huang, Jizhe Zhang, Arman Sabbaghi, and Tirthankar Dasgupta. Op-

timal O✏ine Compensation of Shape Shrinkage for 3D Printing Processes. IIE

Transactions on Quality and Reliability.

[42] Irvin Hwang, Andreas Stuhlmüller, and Noah D. Goodman. Inducing Proba-

bilistic Programs by Bayesian Program Merging. CoRR, arXiv:1110.5667, 2011.

[43] Interactive Data Visualization Inc. SpeedTree. Retrieved 2015-08-07 from http:

//speedtree.com, 2015.

[44] Singular Inversions. FaceGen. Retrieved 2015-07-27 from http://facegen.com,

2015.

[45] K. Norman J. Manning, R. Ranganath and D. Blei. Black Box Variational

Inference. In AISTATS 2014.

[46] Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel. Ma-

terial Memex: Automatic Material Suggestions for 3D Objects. In SIGGRAPH

Asia 2012.

[47] Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel. Ex-

ploring Shape Variations by 3D-Model Decomposition and Part-based Recom-

bination. Comp. Graph. Forum, 31(2pt3), 2012.

[48] Wenzel Jakob and Steve Marschner. Manifold exploration: a Markov Chain

Monte Carlo technique for rendering scenes with di�cult specular transport. In

SIGGRAPH 2012.

[49] D. Jansson and S. Smith. Design fixation. Design studies, 12(1), 1991.

[50] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen

Koltun. A Probabilistic Model for Component-based Shape Synthesis. In SIG-

GRAPH 2012.

[51] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal.

Markov Chain Monte Carlo in Practice: A Roundtable Discussion. The Amer-

ican Statistician, 52(2), 1998.

BIBLIOGRAPHY 124

[52] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-

tion. In ICLR 2015.

[53] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In

ICLR 2014.

[54] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles

and Techniques. The MIT Press, 2009.

[55] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E. Hinton. ImageNet Classifica-

tion with Deep Convolutional Neural Networks. In NIPS 2012.

[56] Chinmay Kulkarni, Steven P Dow, and Scott R Klemmer. Early and repeated

exposure to examples improves creative work. In Design Thinking Research.

Springer, 2014.

[57] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge

Monographs on Applied and Computational Mathematics. Cambridge Univer-

sity Press, 2004.

[58] Roger P. Levy, Florencia Reali, and Thomas L. Gri�ths. Modeling the e↵ects

of memory on human online sentence processing with particle filters. In NIPS

2009.

[59] J. P. Lewis. Generalized Stochastic Subdivision. ACM Trans. Graph., 6(3),

1987.

[60] Ruy Ley-Wild, Matthew Fluet, and Umut A. Acar. Compiling Self-adjusting

Programs with Continuations. In ICFP 2008.

[61] Lei Li, Yi Wu, and Stuart J. Russell. SWIFT: Compiled Inference for Proba-

bilistic Programs. Technical report, EECS Department, University of California,

Berkeley, 2015.

[62] Sharon Lin, Daniel Ritchie, Matthew Fisher, and Pat Hanrahan. Probabilistic

Color-by-Numbers: Suggesting Pattern Colorizations Using Factor Graphs. In

SIGGRAPH 2013.

BIBLIOGRAPHY 125

[63] Fredrik Lindsten, Michael I. Jordan, and Thomas B. Schön. Particle Gibbs with

Ancestor Sampling. J. Mach. Learn. Res., 15(1), 2014.

[64] David J. C. MacKay. Information Theory, Inference & Learning Algorithms.

Cambridge University Press, 2002.

[65] Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. Venture: a higher-

order probabilistic programming platform with programmable inference. CoRR,

arXiv:1404.0099, 2014.

[66] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins,

T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber.

Design Galleries: A General Approach to Setting Parameters for Computer

Graphics and Animation. In SIGGRAPH 1997.

[67] A. Martinovic and L. Van Gool. Bayesian Grammar Learning for Inverse Pro-

cedural Modeling. In CVPR 2013.

[68] Andrew Mccallum, Karl Schultz, and Sameer Singh. Factorie: Probabilistic

programming via imperatively defined factor graphs. In NIPS 2009.

[69] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen

Koltun. Interactive Furniture Layout Using Interior Design Guidelines. In

SIGGRAPH 2011.

[70] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equation of State Calculations by Fast Computing Machines. The Journal of

Computational Physics, 21, June 1953.

[71] Brian Milch, Bhaskara Marthi, Stuart J. Russell, David Sontag, Daniel L. Ong,

and Andrey Kolobov. BLOG: Probabilistic Models with Unknown Objects. In

IJCAI 2005.

[72] Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning in

Belief Networks. In ICML 2014.

BIBLIOGRAPHY 126

[73] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recur-

rent Models of Visual Attention. In NIPS 2014.

[74] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.

Procedural Modeling of Buildings. In SIGGRAPH 2006.

[75] Radomı́r Měch and Przemyslaw Prusinkiewicz. Visual Models of Plants Inter-

acting with Their Environment. In SIGGRAPH 1996.

[76] Radford M. Neal. MCMC Using Hamiltonian Dynamics. Handbook of Markov

Chain Monte Carlo, 2010.

[77] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. Color Compatibil-

ity From Large Datasets. ACM Transactions on Graphics, 2011.

[78] Li-Chen Ou and M Ronnier Luo. A colour harmony model for two-colour

combinations. Color Research & Application, 2006.

[79] Brooks Paige and Frank Wood. A Compilation Target for Probabilistic Pro-

gramming Languages. In ICML 2014.

[80] Vincent Pegoraro, Ingo Wald, and Steven G. Parker. Sequential Monte Carlo

Adaptation in Low-Anisotropy Participating Media. Computer Graphics Fo-

rum, 27(4), 2008.

[81] A. Pfe↵er. Figaro: An object-oriented probabilistic programming language.

Technical report, Charles River Analytics, 2009.

[82] Martyn Plummer. JAGS: Just another Gibbs sampler. http://mcmc-jags.

sourceforge.net/. Accessed: 2016-04-18.

[83] Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung.

Make It Stand: Balancing Shapes for 3D Fabrication. In SIGGRAPH 2013.

[84] P. Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants.

Springer-Verlag New York, Inc., 1990.

BIBLIOGRAPHY 127

[85] Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomı́r Měch. L-

Systems: From The Theory To Visual Models Of Plants. In CSIRO Symposium

on Computational Challenges in Life Sciences, 1996.

[86] Przemyslaw Prusinkiewicz, Mark James, and Radomı́r Měch. Synthetic Topi-

ary. In SIGGRAPH 1994.

[87] G. Ramalingam and Thomas Reps. A Categorized Bibliography on Incremental

Computation. In POPL 1993.

[88] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic

Backpropagation and Approximate Inference in Deep Generative Models. In

ICML 2014.

[89] Daniel Ritchie. Quicksand: A Lightweight Embedding of Probabilistic Pro-

gramming for Procedural Modeling and Design. In The 3rd NIPS Workshop on

Probabilistic Programming, 2014.

[90] Daniel Ritchie, Sharon Lin, Noah D. Goodman, and Pat Hanrahan. Generating

Design Suggestions under Tight Constraints with Gradient-based Probabilistic

Programming. In Eurographics 2015.

[91] Daniel Ritchie, Ben Mildenhall, Noah D. Goodman, and Pat Hanrahan. Con-

trolling Procedural Modeling Programs with Stochastically-Ordered Sequential

Monte Carlo. In SIGGRAPH 2015.

[92] Daniel Ritchie, Andreas Stuhlmüller, and Noah D. Goodman. C3: Lightweight

Incrementalized MCMC for Probabilistic Programs using Continuations and

Callsite Caching. In AISTATS 2016.

[93] Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah D. Goodman.

Neurally-Guided Procedural Models: Learning to Guide Procedural Models

with Deep Neural Networks. CoRR, arXiv:1603.06143, 2016.

BIBLIOGRAPHY 128

[94] G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal

scaling of random walk Metropolis algorithms. The Annals of Applied Proba-

bility, 7(1), 1997.

[95] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and

Redundant Computations. In POPL 1988.

[96] Marshall N. Rosenbluth and Arianna W. Rosenbluth. Monte Carlo Calcula-

tion of the Average Extension of Molecular Chains. The Journal of Chemical

Physics, 23(2), 1955.

[97] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel Distributed Pro-

cessing: Explorations in the Microstructure of Cognition, Vol. 1. chapter Learn-

ing Internal Representations by Error Propagation. MIT Press, 1986.

[98] Michael Schwartz and Peter Wonka. Procedural Design of Exterior Lighting for

Buildings with Complex Constraints. ACM Transactions on Graphics, 2014.

[99] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-

neershelvam, Sander Dieleman Marc Lanctot, Dominik Grewe, John Nham,

Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go

with deep neural networks and tree search. Nature, 529, 2016.

[100] A. F. M. Smith and A. E. Gelfand. Bayesian Statistics without Tears: A

Sampling-Resampling Perspective. The American Statistician, 46(2), 1992.

[101] Je↵rey Smith, Jessica Hodgins, Irving Oppenheim, and Andrew Witkin. Cre-

ating Models of Truss Structures with Optimization. In SIGGRAPH 2002.

[102] Bert Speelpenning. Compiling Fast Partial Derivatives of Functions Given by

Algorithms. PhD thesis, Champaign, IL, USA, 1980.

BIBLIOGRAPHY 129

[103] David J Spiegelhalter, Andrew Thomas, Nicky Best, Wally Gilks, and D Lunn.

BUGS: Bayesian inference using Gibbs sampling. http://www.mrc-bsu.cam.

ac.uk/bugs. Accessed: 2016-04-18.

[104] Stan Development Team. Stan Modeling Language Users Guide and Reference

Manual, Version 2.5.0, 2014.

[105] K.O. Stanley and J. Lehman. Why Greatness Cannot Be Planned: The Myth

of the Objective. Springer International Publishing, 2015.

[106] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes.

Inverse Procedural Modelling of Trees. Computer Graphics Forum, 33(6), 2014.

[107] Jacob Steinhardt and Percy Liang. Filtering with Abstract Particles. In ICML

2014.

[108] Leland Stewart and Perry McCarty, Jr. Use of Bayesian belief networks to

fuse continuous and discrete information for target recognition, tracking, and

situation assessment. SPIE, 1992.

[109] Andreas Stuhlmüller, Robert X.D. Hawkins, N. Siddharth, and Noah D. Good-

man. Coarse-to-Fine Sequential Monte Carlo for Probabilistic Programs. CoRR,

arXiv:1509.02962, 2015.

[110] Nervous System. Kinematics Collection. Retrieved 2015-07-27 from http://

n-e-r-v-o-u-s.com/shop/line.php?code=15, 2015.

[111] Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman,

and Radomı́r Měch. Learning Design Patterns with Bayesian Grammar Induc-

tion. In UIST 2012.

[112] Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomı́r Měch, and Vladlen

Koltun. Metropolis Procedural Modeling. ACM Trans. Graph., 30(2), 2011.

[113] Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. Guided Exploration of

Physically Valid Shapes for Furniture Design. In SIGGRAPH 2012.

BIBLIOGRAPHY 130

[114] Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes,

and Paul Waddell. Inverse Design of Urban Procedural Models. In SIGGRAPH

Asia 2012.

[115] Ondřej Št’ava, Bedřich Beneš, Matthew Brisbin, and Jaroslav Křivánek. Inter-

active Terrain Modeling Using Hydraulic Erosion. In SCA 2008.

[116] Emily Whiting, John Ochsendorf, and Frédo Durand. Procedural Modeling of

Structurally-Sound Masonry Buildings. In SIGGRAPH Asia 2009.

[117] Ronald J. Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine Learning, 8, 1992.

[118] David Wingate, Noah D. Goodman, Andreas Stuhlmüller, and Je↵rey M.

Siskind. Nonstandard Interpretations of Probabilistic Programs for E�cient

Inference. In NIPS 2011.

[119] David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. Lightweight Im-

plementations of Probabilistic Programming Languages Via Transformational

Compilation. In AISTATS 2011.

[120] David Wingate and Theophane Weber. Automated Variational Inference in

Probabilistic Programming. In NIPS 2012 Workshop on Probabilistic Program-

ming.

[121] F. Wood, J. W. van de Meent, and V. Mansinghka. A New Approach to Prob-

abilistic Programming Inference. In AISTATS 2014.

[122] F. Wood, J. W. van de Meent, and V. Mansinghka. A New Approach to Prob-

abilistic Programming Inference. CoRR, arXiv:1507.00996, 2015.

[123] Michael Wörister, Harald Steinlechner, Stefan Maierhofer, and Robert F. To-

bler. Lazy Incremental Computation for E�cient Scene Graph Rendering. In

HPG 2013.

BIBLIOGRAPHY 131

[124] Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Fit and Diverse:

Set Evolution for Inspiring 3D Shape Galleries. In SIGGRAPH 2012.

[125] Lingfeng Yang. From Execution Traces to Specialized Inference. PhD thesis,

Stanford, CA, USA, 2015.

[126] Lingfeng Yang, Pat Hanrahan, and Noah D. Goodman. Generating E�cient

MCMC Kernels from Probabilistic Programs. In AISTATS 2014.

[127] Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra. Shape

Space Exploration of Constrained Meshes. In SIGGRAPH Asia 2011.

[128] Yi-Ting Yeh, Katherine Breeden, Lingfeng Yang, Matthew Fisher, and Pat

Hanrahan. Synthesis of Tiled Patterns Using Factor Graphs. ACM Trans.

Graph., 32(1), 2013.

[129] Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D. Goodman, and Pat

Hanrahan. Synthesizing Open Worlds with Constraints Using Locally Annealed

Reversible Jump MCMC. In SIGGRAPH 2012.

[130] Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F.

Chan, and Stanley J. Osher. Make It Home: Automatic Optimization of Fur-

niture Arrangement. In SIGGRAPH 2011.

[131] Lap-Fai Yu, Sai-Kit Yeung, Demetri Terzopoulos, and Tony F. Chan. DressUp!:

Outfit Synthesis Through Automatic Optimization. In SIGGRAPH Asia 2012.

[132] Mehmet Ersin Yumer, Paul Asente, Radomir Mech, and Levent Burak Kara.

Procedural Modeling Using Autoencoder Networks. In UIST 2015.

[133] Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining

Guo. Motion-guided Mechanical Toy Modeling. In SIGGRAPH Asia 2012.

[134] Matthew Zucker, Nathan Ratli↵, Anca Dragan, Mihail Pivtoraiko, Matthew

Klingensmith, Christopher Dellin, J. Andrew (Drew) Bagnell, and Siddhartha

Srinivasa. CHOMP: Covariant Hamiltonian Optimization for Motion Planning.

International Journal of Robotics Research, May 2013.

